>

’4' GeodeFinance

Audit Response Report

March 2023

Prepared by Oxlcebear

Geodefi Ltd.

This Report

The Protocol

Audit Process
Post-Audit Period
The Staking Library

© 0O NO Gl b WW

Summary
1. General
2. Codebase and Modular Architecture
3. Governance "
4. Staking Pools 1"
5. Oracle 12
6. Withdrawal Credential Contract 13

Audit Findings 15
1. Oracle’s _sanityCheck for prices will not work with slashing 16
2. Multiple calculation mistakes in the _findPricesClearBuffer function 16
3. New interfaces can add malicious code without any delay or check 17
4. MiniGovernance - fetchUpgradeProposal will always revert 17
5. reportOracle can be sandwiched for profit. 17
6. Updating interfaces of derivatives is done in a dangerous and unpredictable
manner. 18
7. A sandwich attack on fetchUnstake 18
8. Only the GOVERNANCE can initialize Portal 18
9. The maintainer of the MiniGovernance can block the changeMaintainer function. 19
10. Entities are not required to be initiated. 19
11. Node operators are not risking anything when abandoning their activity or
performing malicious actions 19
12. Planets should not act as operators 20
13. The blameOperator can be called for an alienated validator 20
14. Latency timelocks on certain functions can be bypassed. 20
15. MiniGovernance’s senate has almost unlimited validity 20
16. Proposed validators are not accounted for in the monopoly check. 21
17. Comparison operator used instead of assignment operator 21
18. initiator modifier will not work in the context of one transaction. 21
19. Incorrect accounting for the burned gEth. 22
20. Boost calculation on fetchUnstake should not be using the cumBalance when it is
larger than debt. 22

21. DataStore struct not having the _gap for upgrades.

Audit Notes
Post Audit Findings

1. Faulty Validator Creation

2. Dynamic Withdrawals do not work.

3. Inaccurate assumption on buffers used in oracle price calculation
4. Missing fallback functions

5. Maintainer can attack the Node Operator

6. Fee donation may cause some serious problems

7. Burning surplus causes disruption

8. Sanity check potential underflow issue

9. Use _disablelnitializers function

10. depositPlanet might fail because of swap(mingETH)
11. Withdrawal contract upgrades can be manipulated
12. Portal can not pause or unpause gETH

13. Potential Governance Attacks

14. Faulty alienation

15. Utilize gETH avoiders in the contracts

16. Swap.sol should use fixed arrays to save gas

17. Using a password and hash is not vulnerable, but inappropriate
18. DataStore is not accessible

19. High MONOPOLY_RATIO

20. Flawed Upgradability Pattern

21. Flawed Architecture: Nested Libraries

22. Flawed Architecture: Arbitrary Inheritance

Post Audit Improvements

1. Simplified Terminology
2. Code Complexity, Sustainability and Readability
3. Improved Trustlessness and Security Assessment
1. Rogue Actors
2. Hacks

Conclusion

22
23
24
24
24
25
26
26
27
27
28
29
29
29
30
31
31
32
32
32
33
33
34
34
35
36
36
37
38
38
39
41

Introduction

This Report

This report is prepared to provide insight into the audit process and audit findings,
implemented mitigations and further improvements; the effect of the review
process on product development, and the post-audit period.

The main goal of this report is to provide a pleasant experience for future auditors,
and document all the changes in the Protocol for reference.

This document consists of a short introduction, a summary of audit findings and
mitigations, detailed explanations of the post-audit improvements, all contract
changes with respective reasonings, and a short conclusion.

This document should take less than 2 hours to review.

This version of the report is finalized on March 22, 2023.

The Protocol

Geode Finance (The Protocol) is a Staking Protocol that allows anyone to create a
Trustless Staking Pool (Pool). The principal objective of The Protocol is to remove
the intermediaries within the staking environment by creating a Global Standard
which provides security, accessibility, profitability, and improved user experience
for the stakers.

The Protocol was founded as a public good in 2021 to respond to the
monopolization of Liquid Staking Derivatives (LSDs). Extensive research was
conducted to develop a decentralized infrastructure that directly connects the
stakers with Industrial Node Operators without issuing trust among any of the
parties. As a result, a secure approach for the pooling operations, validator
creation process, withdrawal process, oracle operations, and smart contract
upgradability patterns were developed.

Beta was launched on Avalanche Blockchain in June 2022.

The core of the protocol consists of a unique ERC1155 token named gETH, and a
smart contract called Portal.

gETH acts as the central database of user balances and derivative prices. gETH
also utilizes gETHInterfaces, permissioned smart contracts that provide
functionality on top of the present data. gETH contract is immutable.

Portal handles pool creation and pool management, related staking operations
such as user deposits and validator creations. Portal is upgradeable and utilizes
the UUPS pattern.

Audit Process

The development process to bring The Procol to Ethereum started in February
2022. The Team created a very complex product for Ethereum Staking and
finalized the codebase in October 2022.

To make sure that The Protocol will work flawlessly, and will not cause any
problems for the users and user funds, the Team decided to work with Consensys
Diligence on a comprehensive audit that will cover all the smart contracts within
The Protocol.

The review was conducted over six weeks, from November 1st, 2022 to December
9th, 2022, by Sergii Kravchenko, Christian Goll, and Chingiz Mardanov (Auditors).
A total of 60 person-days were spent.

The review was conducted on the commit hash:
8b07c0723d2a655a20d26620d4c3962cb9de4b00 .

During this period, the Team and the Auditors had regular meetings and
asynchronous discussions where everything from simple variable naming to
complex system designs were reviewed. Notably, the Auditors were very
communicative, proficient in smart contract development, and unbothered by the
complexity of the codebase.

This report was delivered on December 9th, 2022.

https://github.com/Geodefi/Portal-Eth/tree/8b07c0723d2a655a20d26620d4c3962cb9de4b00
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#appendix---code-quality-recommendations

Post-Audit Period

While the audit was being conducted, the Team was already working on small
fixes and implementing some improvements as a response to the feedback from
the Auditors.

The Audit report underlined 21 issues, varying from Critical to Minor. Furthermore,
the Auditors expressed numerous concerns during the review process, stating
that the Protocol was not ready for deployment and contains many structural
issues and uncertainties.

When the Audit report was received, the Development Team started discussing
the design fallacies and shortcomings of The Protocol. Within this period, the
Team had over 40 meetings with investors, potential partners, outside
contributors, and community members; gathering feedback from different user
groups. Moreover, 2 separate internal audits were conducted by different
developers to identify the underlying issues within the codebase.

Following the audit report, meetings, and internal reviews, cumulatively more than
100 points were documented. These varied from simple suggestions to major bug
fixes and breaking design proposals. Most consequential issues can be grouped,
in order of importance:

Major Bugs

Unnecessary code complexity
Experimental implementations
Poor code readability
Complex terminology
Ambiguous trust assumptions
Unnecessary Oracle operations
Misplaced priorities

. Unused code blocks

10. Lack of documentation

11. Vague product market fit

©®NO A LN S

As a response, the development team was gathered in mid-January and declared
an internal emergency period for the following 3 months, requesting all
development resources to focus on protocol and smart contract development.

During this period, the vision behind The Protocol was heavily questioned.
Previously, the Team was focused on creating the best staking product that will
allow other smart contracts to utilize auto-staking, also known as superfluid
staking. This was made possible by Dynamic Withdrawals supported by Liquidity
Pools called Dynamic Withdrawal Pools. However, it was decided that Dynamic
Withdrawals was not a feature that can be simply implemented on Ethereum.
There is a consensus that this is the very idea that caused most of the issues
within The Protocol.

The Staking Library

New approach is named The Staking Library, and it is exactly how it sounds like:

e The new architecture is Modular, allowing any functionality to be
implemented within the Protocol without logical changes on Portal.

e The Protocol is still relatively complex, but the code is very simple and much

smaller.

Upgradability patterns are much stronger and more secure.

Portal is less Governance dependent.

Staking pools are now configurable and customizable.

Staking pools are now Permissionless!

Much better user experience for the staking pool owners.

Near 100% test coverage.

In the most simple terms, The Protocol will provide the user experience the
Beacon Deposit Contract can’t. Geode will be the layer between Staking Pools and
Node Operators.

Any arbitrary functionality that is possible for Staking, will be available with
Geode. And users will choose how they want to combine and utilize them for their
staking needs.

Implementation was finalized in early March. A version of The Protocol was
deployed to Goerli and multiple node operators were onboarded.

Initial testing with the Node Operators is already done.

An immediate but not very comprehensive internal audit of the new approach was
finished on March 16, 2023. The suggested mitigations are implemented.

A comprehensive internal audit will be finalized on April 8, before external audits.

In conclusion, the review process conducted by the Consensys Diligence Team
effectively revolutionized Geode Finance.

https://etherscan.io/address/0x00000000219ab540356cbb839cbe05303d7705fa

Summary

globals Internal Library Added

gETH Contract Small Improvement Here! Here!
ERC20InterfaceUpgradable ' gETHInterface Small Improvement Here! Here!
E(Ij:tiglnterfacePermitUpgr gETHInterface Small Improvement Here! Here!
MathUtils Internal Library No changes Here! Here!
AmplificationUtils Internal Library No changes Here! Here!
SwapUtils ‘_ Clean Up Here! Here!
LPToken Contract No changes Here! Here!
Swap Contract Clean Up Here! Here!
MiniGovernance Contract Removed Here! -
WithdrawalContract Contract Added - Here!
DepositContractUtilsLib Internal Library Refactor Here! Here!
DataStoreUtilsLib Internal Library ‘_ Here! Here!
GeodeUtilsLib ‘_ Clean Up Here! Here!
MaintainerUtilsLib Internal Library Removed Here! -

Portal Contract Clean Up Here! Here!
IDepositContract Interface Refactor Here! Here!
;E dlzct:)lzeOInterfacePermitUpgr Interface Removed Here! -

IgETHInterface Interface Added - Here!
IGeodeModule Interface Added - Here!
IWhiteList Interface Added - Here!

https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/utils/globals.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/gETH.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/gETH.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/gETHInterfaces/ERC20InterfaceUpgradable.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/gETHInterfaces/ERC20InterfaceUpgradable.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/gETHInterfaces/ERC20InterfacePermitUpgradable.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/gETHInterfaces/ERC20InterfacePermitUpgradable.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/withdrawalPool/utils/MathUtils.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/liquidityPool/utils/MathUtils.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/withdrawalPool/utils/AmplificationUtils.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/liquidityPool/utils/AmplificationUtils.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/withdrawalPool/utils/SwapUtils.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/liquidityPool/utils/SwapUtils.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/withdrawalPool/LPToken.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/liquidityPool/LPToken.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/withdrawalPool/Swap.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/liquidityPool/Swap.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/MiniGovernance/MiniGovernance.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/withdrawalContract/WithdrawalContract.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/utils/DepositContractUtilsLib.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/utils/DepositContractUtilsLib.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/utils/DataStoreUtilsLib.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/utils/DataStoreUtilsLib.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/utils/GeodeUtilsLib.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/utils/GeodeUtilsLib.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/utils/MaintainerUtilsLib.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/utils/OracleUtilsLib.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/utils/OracleUtilsLib.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/utils/StakeUtilsLib.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/utils/StakeUtilsLib.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/Portal.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/Portal.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/interfaces/IDepositContract
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/interfaces/IDepositContract
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/interfaces/IERC20InterfacePermitUpgradable
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/interfaces/IgETHInterface.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/interfaces/IGeodeModule.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/interfaces/IWhiteList.sol

IMiniGovernance Interface Removed Here! -

IWithdrawalContract Interface Added - Here!
I[Portal Interface Refactor Here! Here!
ILPToken.sol Interface Refactor Here! Here!
ISwap Interface Clean Up Here! Here!
IgETH Interface Refactor Here! Here!
SwnerPausabIeUpgradeabI o No changes Here! Here!
TestMathUtils Helper No changes Here! Here!
TestSwapReturnValues Helper No changes Here! Here!
TestDepositContractUtils Helper Refactor Here! Here!
TestDataStoreUtils Helper _ Here! Here!
TestGlobals Helper Added - Here!
TestGeodeUtils Helper Removed Here! -

TestStakeUtils Helper Removed Here! -

WhiteList Helper Added - Here!
ERC1155ReceiverMock Helper Refactor Here! Here!
nonERC1155Receiver Helper Refactor Here! Here!
DepositContract Helper Removed Here! -

1. General

a. Even though this version is far more functional, most of the changes
are just removing big code chunks or renaming
concepts/variables/files.

b. globals.sol is added to improve code readability. It includes global
parameters or enums such as PERCENTAGE_DENOMINATOR,
ID_TYPE, VALIDATOR_STATE.

c. gETH avoiders logic is now ID specific, as advised.

d. A solidity interface named IgETHInterface was introduced, providing
a standard for all gETHInterface contract initializers. Allowing the
Team to generalize the approach on initiatePool.

e. IGeodeModule added, providing a standard upgradability logic for any
Geode Module. Only utilized by Portal and WithdrawalContracts for
now. This contributes to modular architecture.

https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/interfaces/IMiniGovernance
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/interfaces/IWithdrawalContract.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/interfaces/IPortal
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/interfaces/IPortal.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/interfaces/ILPToken.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/interfaces/ILPToken.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/interfaces/ISwap
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/interfaces/ISwap.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/interfaces/IgETH
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/interfaces/IgETH
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/withdrawalPool/helpers/OwnerPausableUpgradeable.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/liquidityPool/helpers/OwnerPausableUpgradeable.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/withdrawalPool/helpers/test/TestMathUtils.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/liquidityPool/helpers/test/TestMathUtils.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/withdrawalPool/helpers/test/TestSwapReturnValues.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/liquidityPool/helpers/test/TestSwapReturnValues.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/helpers/test/TestDepositContractUtils.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/helpers/test/TestDepositContractUtils.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/helpers/test/TestDataStore.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/helpers/test/TestDataStoreUtils.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/helpers/test/TestGlobals.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/helpers/test/TestGeodeUtils.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/helpers/test/TestStakeUtils.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/helpers/test/WhiteList.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/helpers/test/ERC1155ReceiverMock.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/helpers/test/ERC1155ReceiverMock.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/helpers/test/nonERC1155Receiver.sol
https://github.com/Geodefi/Portal-Eth/blob/6f6ef6c701f0a6bfe4a190fd1399bca334b96ef4/contracts/Portal/helpers/test/nonERC1155Receiver.sol
https://github.com/Geodefi/Portal-Eth/blob/8b07c0723d2a655a20d26620d4c3962cb9de4b00/contracts/Portal/helpers/test/DepositContract.sol

> @

Dynamic Withdrawal Pool is renamed to Liquidity Pool.
SwapUtils and Swap.sol now enforces 2 tokens for gas improvement.

. Tests for the external libraries - GeodeUtils, StakeUrtils, OracleUtils -

are conducted through Portal instead of test contracts as a response
to an issue.

maintainerUtils library is removed. Some functionality moved into
StakeUtils.

Near 100% code coverage is achieved.

2. Codebase and Modular Architecture

a.
b.

DataStore struct is renamed as IsolatedStorage.
Array logic with getters, appenders, and batch appenders are
introduced to DataStoreUtils:
i. Every array has a key (arrayKey), that is generated by
getKey(id, “name”).

i. Data pointer for an element is getKey(index, arrayKey)

iii. Thelength of an array is simply self.uintData[arrayKey]

iv. Batch array appenders should be used to save gas cost
Added all readDataStore (view) functions to Portal and removed
batch getters like getPlanet.

IGeodeModule has a circuit breaker, named recoveryMode. Which
signals other contracts to stop relying on them:
i. WithdrawalContract checks Portal before fetching an upgrade.

ii. Portal checks withdrawalContract before proceeding in deposit

or proposeStake functions.

iii. Current recoveryMode conditions for Portal:

1. Contract is paused
2. Contract needs to be upgraded or initialized
3. Senate expired, which is possible.
iv. Current recoveryMode conditions for Withdrawal Contract:
1. Contract is paused
2. An upgrade needs to be fetched from Portal
3. Contract needs to be upgraded or initialized
4. Pool owner and Contract owner are different
5. Senate expired, which is not possible.

e. Default module and Allowed module logics are added, as advised.

f. newProposal checks for LIMIT parameters of globals.sol to decide if a
module is “default” or “allowed”:

A Module is distinguished by its TYPE. Within ranges

determined in globals.sol, it is either a defaultModule or an

allowedModule.

There is only 1 instance of a defaultModule:

1.
2.
3.

Withdrawal Contract
Liquidity Pool
Liquidity Pool Token

There can be many instances of an allowed module:

1.

gETHInterfaces

g. fetchUpgradeProposal logic is improved.
Previously:

1.

Anyone can fetch a proposal but can not approve. Very
Faulty, susceptible to griefing attacks if timed well.

It reads the default withdrawal contract version via
Portal.

The Withdrawal Contract reads a proposal from Portal.
Faulty; proposals are not in Portal to “be read”.
Constructs a new proposal with checks and stuff. Faulty,
susceptible to griefing attacks if a wrong contract is
provided to begin with.

Forgets calling upgradeTo and doesn’t even go under
recoveryMode. Well, faulty.

Withdrawal Contract calls
Portal.fetchModuleUpgradeProposal function giving its
TYPE.

Withdrawal Contract checks if Portal is in recoveryMode
before making a call.
Portal.fetchModuleUpgradeProposal creates a proposal
in the withdrawal contract, msg.sender, since
newProposal is a part of IGeodeModule logic.

Just approves and calls upgradeTo immediately.

10

3. Governance

a. Universe struct is renamed as DualGovernance.

b. Senate Election logic, related parameters, functions, and events are
removed.

Vi.

Vii.

Instead, Senate will be an external contract that handles how
proposal approvals work internally.

If Senate change is needed, it can be achieved with a proposal
TYPE 1 or globals.ID_TYPES.SENATE

Governance can choose to keep the same Senate active:
Proposal CONTROLLER would be the current Senate.
Governance can choose another contract as the Senate, which
is effective if the current Senate approves.

Governance should propose a new Senate before Senate
Expiry. Otherwise, it is advised that users should stop using
The Protocol.

If Senate ever expires, Portal goes under recoveryMode, which
doesn’t change any internal functionality.

rescueSenate function, a circuit breaker utilizing Senate Expiry
is introduced.

c. FEE_COOLDOWN is introduced. Not really important.

d. A function like updateStakingParams is not needed anymore,
because there are barely any parameters to update. Reducing the
direct control and effect of the Governance.

4. Staking Pools

StakePool struct is renamed as PooledStaking. Effectively, its only
remaining parameter from the old version is geTH.

Pools can not be Operators anymore.

Pools are permissionless. However, it requires at least 32 Ether, 1
validator worth of funds, to prevent sybil attacks.

Planet - Comet separation is merged under Configurable Staking

a.

Pools.

Pool Customizability and Modules:

gETHinterface: Optional. Can choose any Interface that is
allowed. Can NOT be changed after initiation. Utilized as an
allowed module.

1

ii. Bound Liquidity Pool: Optional. Can choose to deploy or not.
Can be deployed later. Can be replaced with a new version
later. Utilized as a default module.

iii. Withdrawal Contract: Mandatory. Can choose to upgrade to a
new contract later. Utilized as a default module.

iv. Visibility: Can be private or public. Can use a whitelisting
contract if private. Not a module.

v. Maintainers: Optional. Can be used to automate daily
operations. Currently, validator distribution via
batchApproveOperators for pools and other maintenance. Can
be used by Operators for proposeStake and beaconStake
operations. Not a module.

f. Dynamic Withdrawal Logic is completely removed from the
StakeUltils, including functions and parameters like withdrawalBoost,
donateBalancedFees, withdrawPlanet, etc.

g. Issues around the implementation of surplus burning were identified
and it was removed. Simply, it was problematic for the Validator
creation process.

h. pauseStakingForPool and unpauseStakingForPool functions are
removed, now staking can be stopped by pausing pool’s withdrawal
contract and pushing it into recoveryMode.

i. Better and much clearer Initiators.

5. Oracle

a. Superior simplification.

b. Oracle’s struct is no longer a parameter in stakeUtils’ struct.
OracleUtils doesn’t even have a struct anymore.

c. Prevent delegateCall hell. Instead, Oracle uses StakeUtils if needed.
StakeUtils doesn’t even know OracleUtils exists.

d. No more maintaining the time constraints. Previously worked on the
first 30 min of a given day, where some functions such as
beaconStake was deactivated.

e. Because of the above point, and other issues that identified with its
methodology, mint/burn buffers are removed.

f. Oracle operations are simplified. No more finding the real price but
confirming some other price by using some data from The Beacon
Chain -while pretending to not trust it-, and utilizing some “buffers”

12

which doesn’t even work because you can never know who is burning
tokens and when.

Vi.

Vii.

Oracle works multiple times a day.
1. Approving Validator Proposals every x hours, and every
y proposals.
2. Updating price merkle root every z hours, and if any
derivative price changes more than k%.

3. Operators are regulated if and when there is an issue.
Oracle Nodes calculate the prices of all derivatives and create
a merkle root.

If consensus is achieved, merkle root and validator proposals
are sent.

When a new price merkle root is set, all validator prices are
invalidated and deposit/withdrawal operations are deactivated
until the price is validated with proper merkle proofs.
Someone who wants to mint new tokens needs to call
priceSync.

deposit function takes merkle proofs and operates a priceSync,
if the price is invalid.

If there are no Oracle updates within H hours, all prices are
invalidated.

g. To make things easier for the stakers, isPriceValid checks are added
when price is needed such as in the deposit function which takes
merkle proofs and operates a priceSync if the price is invalid. This
way, you can make sure that there is no cheap minting!

h. Clean up for unrelated functionality. Mostly moved into StakeUtils.
6. Withdrawal Credential Contract
Inherites IGeodeModule.
Previously MiniGovernance, renamed to WithdrawalContract.
IsolationMode is replaced and improved with recoveryMode from
IGeodeModule.
Unnecessary passwordHash logic is removed, instead, recoveryMode
is utilized to check if pool owner is not the contract owner.
Calling refreshSenate every now and then to signal activity is
deprecated. Withdrawal Contract’s Senate never expires.
claimUnstake logic is removed. Funds never return to Portal once
validators are created.
PoolGovernance struct is removed, no more needed.

a.
b.
C.

13

Audit Mitigations

Audit Findings

MiniGovernance.sol

Contract

Portal.sol

Contract

gETH.sol

Contract

ERC20InterfacePermi
tUpgradable.sol

gETHInterface

ERC20InterfaceUpgr
adable.sol

gETHInterface

ERC1155SupplyMinte
rPauser.sol

Helper

DataStoreUtilsLib.sol

21

Internal Library

GeodeUtilsLib.sol

MaintainerUtilsLib.sol

Internal Library 14,18

OracleUtilsLib.sol

1,2, 5,16, 17,
19

StakeUtilsLib.sol

2,3,6,7,9,
11 8 210,12,13, 14,
16, 19, 20

LPToken.sol

Contract

Swap.sol

Contract

AmplificationUtils.sol

Internal Library

MathUtils.sol

Internal Library

SwapUtils.sol

oO|j|Oo0| Ol O] O
oO|loOo|O| O| O
ol NolNol Nel Ne)
OO0 | Ol O)| O

14

1. Oracle’s _sanityCheck for prices will not work with slashing

Severity: Critical.
Mitigated, Improved.

The new approach to the oracle price updates is slightly different. Previously,
Oracle would conduct the sanity check and proceed to update the prices of geTH
derivatives. Now, Oracle only sends a Merkle Root. When a new Root is sent,
isPriceValid returns false for all pools, invalidating all previous gETH prices.
deposit Function in the StakeUtils checks for isMintingAllowed, which checks for
price validity.

deposit function in Portal accepts MerkleProofs, updating the derivative price if
needed.

If there are no Root updates for 24h, the price is invalidated automatically.
Furthermore, Oracle has a slight delay before publicizing the proofs, meaning no
one can see them until the Root is finalized.

Currently, there are no ways to mint cheap tokens by frontrunning the Oracle.

Secondly, if the price falls below a certain threshold, currently 7% daily, the price
can not be updated. Meaning if a validator is slashed, price can not be updated for
the next 7 days and no more deposits are allowed for this pool within this period.
Same goes for price increases but it is expected that threshold will be lower than
7%.

This is not a bug, this is a feature, a circuit breaker.

Finally, _sanityCheck function had an underflow issue detected, which is also

mitigated.

2. Multiple calculation mistakes in the _findPricesClearBuffer
function

Severity: Critical.
Deprecated.

_findPricesClearBuffer is deprecated. It is worth noting that the Team also
identified a bug that invalidates the whole logic of buffers.

15

https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#oracles-_sanitycheck-for-prices-will-not-work-with-slashing
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#multiple-calculation-mistakes-in-the-_findpricesclearbuffer-function
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#multiple-calculation-mistakes-in-the-_findpricesclearbuffer-function

3. New interfaces can add malicious code without any delay or
check

Severity: Major.

Mitigated, Improved.

Thanks to Modular Architecture, the Protocol utilize _allowedModules for
gETHInterfaces now. This effectively means any interface is, for sure, proposed by
the Governance and approved by the Senate. The Team agrees that user security
is much more important than developer experience.

Additionally, gETH avoiders logic is changed to be ID based rather than users
avoiding all interfaces.

4. MiniGovernance - fetchUpgradeProposal will always revert

Severity: Major.

Mitigated, Improved.
The hard-coded proposal duration is switched to 3 weeks.
Notably, the fetch-upgrade pattern is also improved with the new function that is

used in Portal: fetchModuleUpgradeProposal. This function operates for any
modules that utilize IGeodeModule.

5. reportOracle can be sandwiched for profit.

Mitigated, Improved.

The explanation for issue 1 applies here as well. No one can mint cheap tokens.
However, yes, they can transfer it or trade it, which is out of scope for us.

16

https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#new-interfaces-can-add-malicious-code-without-any-delay-or-check
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#new-interfaces-can-add-malicious-code-without-any-delay-or-check
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#minigovernance---fetchupgradeproposal-will-always-revert
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#reportoracle-can-be-sandwiched-for-profit

6. Updating interfaces of derivatives is done in a dangerous and
unpredictable manner.

Mitigated.
The explanation for issue 3 applies here as well.

Additionally, a pool can be configured with any interface that is allowed, but Portal
doesn’t allow changing the interface address or using multiple interfaces.

7. A sandwich attack on fetchUnstake

Deprecated.

fetchUnstake was a part of the Dynamic Withdrawal Pools functionality and DWP
is deprecated.

It is worth noting that, now, Portal will never touch the validator funds after they

are sent to the beacon chain. All the exit operations will be handled by the
withdrawal contract.

8. Only the GOVERNANCE can initialize Portal

Deprecated.

There is no longer a function called updateStakingParams because there are no
parameters for Governance to update. This is a great improvement, minimalizing
the Governance dependency, and making Portal much stronger in terms of
trustlessness.

17

https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#updating-interfaces-of-derivatives-is-done-in-a-dangerous-and-unpredictable-manner
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#updating-interfaces-of-derivatives-is-done-in-a-dangerous-and-unpredictable-manner
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#a-sandwich-attack-on-fetchunstake
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#only-the-governance-can-initialize-the-portal

9. The maintainer of the MiniGovernance can block the
changeMaintainer function.

Deprecated, Improved.

Maintainer - Controller separation is now very well defined in StakeUtils:
e CONTROLLER: owns and controls.
e maintainer: automates, optimizes, and serves.

WithdrawalContract’s owner is the pool's Controller. There is a possibility that the
two can be different if not changed simultaneously. In that case, the
withdrawalContract will go under recoveryMode, signaling Portal to seize minting
and staking operations.

It is worth noting that even if a maintainer goes rogue and effectively imprisons its

operator, it can be changed by the CONTROLLER. Because changeMaintainer is
not secured with the authenticate function, but has local checks.

10. Entities are not required to be initiated.

Mitigated.
authenticate function checks for initiated parameter for both operator and pool

TYPEs.

11.Node operators are not risking anything when abandoning
their activity or performing malicious actions

Acknowledged.

This is a design choice that is well expressed.

18

https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#the-maintainer-of-the-minigovernance-can-block-the-changemaintainer-function
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#the-maintainer-of-the-minigovernance-can-block-the-changemaintainer-function
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#entities-are-not-required-to-be-initiated
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#node-operators-are-not-risking-anything-when-abandoning-their-activity-or-performing-malicious-actions
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#node-operators-are-not-risking-anything-when-abandoning-their-activity-or-performing-malicious-actions

Notably, Geode is much better than its competitors. While some staking pools
distribute fees every day and effectively risk paying a fee for no real returns,
Geode distributes Operator and Pool owner fees if and when the funds are back in
the Execution Layer - withdrawalContract of the pool -.

12. Planets should not act as operators

Mitigated.

Planets, renamed as Pools, do not act as operators anymore.

13. The blameOperator can be called for an alienated validator

Mitigated.

blameOperator now checks if the validator is active instead of checking if the
validator is not exited.

14. Latency timelocks on certain functions can be bypassed.

Mitigated.
Latency timelocks on both fee and validatorPeriod are improved to prevent any

function calls when it's locked. Once the parameter starts switching, it can not be
changed again.

15. MiniGovernance's senate has almost unlimited validity

Mitigated.

19

https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#planets-should-not-act-as-operators
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#the-blameoperator-can-be-called-for-an-alienated-validator
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#latency-timelocks-on-certain-functions-can-be-bypassed
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#minigovernances-senate-has-almost-unlimited-validity

WithdrawalContracts, previously miniGovernances, do not utilize senate expiry
anymore. The logic of refreshing the senate expiry was introduced with the
concerns of a pool owner leaving their pool. With the current set up this is not a
problem and withdrawal contracts do not require such action. Funny enough,
withdrawalContracts certainly have unlimited validity now.

16. Proposed validators are not accounted for in the monopoly
check.

Mitigated.

totalProposedValidators and proposedValidators parameter for operator TYPEs is
introduced.

It is increased when a validator is proposed.

It is decreased when a validator is either activated or alienated.

It is checked before proposing new validators via proposeStake.

17.Comparison operator used instead of assignment operator

Mitigated.

18. initiator modifier will not work in the context of one
transaction.

Deprecated, Improved.
MaintainerUtils is deprecated. Likewise, the modifier initiator is removed. However,

StakeUtils still has initiators, but these initiators are easy to understand, designed
with customizability.

20

https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#proposed-validators-not-accounted-for-in-the-monopoly-check
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#proposed-validators-not-accounted-for-in-the-monopoly-check
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#comparison-operator-used-instead-of-assignment-operator
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#initiator-modifier-will-not-work-in-the-context-of-one-transaction
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#initiator-modifier-will-not-work-in-the-context-of-one-transaction

It is now very easy to understand what initiatePool and initiateOperator functions
are doing.

19. Incorrect accounting for the burned gEth.

Deprecated.

Buffers are removed.

20. Boost calculation on fetchUnstake should not be using the
cumBalance when it is larger than debt.

Deprecated.

fetchUnstake is removed.

21. DataStore struct not having the _gap for upgrades.

Mitigated.

_gap[12] is added to the DataStore struct, renamed as IsolatedStorage.

21

https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#incorrect-accounting-for-the-burned-geth
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#boost-calculation-on-fetchunstake-should-not-be-using-the-cumbalance-when-it-is-larger-than-debt
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#boost-calculation-on-fetchunstake-should-not-be-using-the-cumbalance-when-it-is-larger-than-debt
https://consensys.net/diligence/audits/private/ueqwl4tntdgsg5/#datastore-struct-not-having-the-_gap-for-upgrades

Audit Notes

As a response to the Code Quality Recommendations:

e Introduced the globals.sol file which is used to define the arbitrary
parameters within The Protocol. Using UINT parameters with well-defined
values was preferred over using Enums.

e MaintainerUtils is removed. maintainerlogic was revised and moved into
StakeUtils with a relatively small functionality.

e WithdrawalContract, previously miniGovernance, using a proposal to fetch
an upgrade proposal is fixed. IsolatedStorage is a holy place for us and the
Proposals should not be used in any other way than read functionalities.

e Authentication issue was resolved. Every contract has well-placed access
checks:

o geodeUtils has OnlyGovernance, OnlySenate and OnlyController
checks with modifiers.

o stakeUtils has the "authenticate()" function which checks for
Maintainers, Controllers, and TYPE. Except changeMaintainer, it has
its own local checks.
oracleutils has OnlyOracle checks with a modifier.

Portal has an OnlyGovernance check on: pause, unpause,
pausegETH, unpausegETH, setEarlyExitFee, releasePrisoned.

e As you can see, the naming convention is heavily revised and will be
continued.

22

Post Audit Findings

Post Audit Findings

1. Faulty Validator Creation

Severity: Critical.

Signature is one of the parameters while calling the Beacon deposit contract to
initiate a validator. Normally, this signature is created by a CLI provided by
Ethereum.

proposeStake function takes a signature parameter from the operator and uses it
to send 1 Eth to initiate the validator. Then, it is stored in the validator struct.
When the beaconStake function is called by the operator; the very same signature
is used again, sending 31 ETH to the previously approved validators.

However, signature creation also takes the amount of Ether being sent into
consideration. This means using the same signature will fail either way.

Mitigation:

proposeStake takes 2 signatures:
e Sig1: used on proposeStake while sending the Ether to the deposit contract.
e Sig31: stored in the validator struct to be used in the beaconStake calls.

Both parameters are validated between proposeStake and beaconStake
operations by Oracle while updating the Verification Index. But just the Sig31is
stored in the validator struct.

2. Dynamic Withdrawals do not work.

Severity: Critical.

Dynamic withdrawals allow node operators to profit from the arbitrage between
the principal and its price. Thus, creating very healthy derivatives that are
sustained by balancing the supply and demand between the consensus layer and
the execution layer.

23

Simply put, Ethereum staking doesn’t have instant validator exits, making it
impossible to capture the arbitrage for the operator. Because there is a withdrawal
queue, according to the EIP-4895, and it can take days for exited funds to be
withdrawn.

Since this arbitrage is the core of this mechanism, it is not possible to implement
Dynamic Withdrawals for Ethereum staking.

Mitigation:

Dynamic Withdrawal functionality is removed. Related functions and parameters
such as fetchUnstake, signalUnstake, switchWithdrawalBoost, withdrawalBoost,
BOOST_SWITCH_LATENCY, and related events are removed.

Instead, all Pools will have withdrawal queues that are handled in the
withdrawalContract. Furthermore, with this fix Portal does not have special
permissions on withdrawalContract. Previously, it could drain any amount of Ether
without any checks...

3. Inaccurate assumption on buffers used in oracle price
calculation

Severity: Critical.

Telescope was designed to work once every night, but it can not provide data
while still collecting it. So, there is a delay between calculation and registration.
Because of this, Portal utilizes mint and burn buffers. When the oracle is working
for the first 30 minutes of the day, buffers track the supply change.

There is a false assumption that the burn buffer is tracking the balance decreases
correctly while burning tokens from the surplus. However, anyone can burn their
own tokens without bothering Portal.

Because of this, Portal will not find the correct oracle price and will not be able to
prove it from the Merkle Root. Thus, simple 1 gwei burning at the correct time can

prevent updating the derivative prices and Merkle Root.

Mitigation:
First of all, Oracle works all the time, it doesn’t have these limitations anymore.

24

Secondly, Oracle only updates the Merkle Root and does not issue any
calculations or checks.

Finally, the derivative price will be updated by the user when it is going to be
used. If it is not updated, minting operations are not allowed.

In conclusion, buffers are removed as well as parameters and functions such as
ORACLE_PERIOD, ORACLE_ACTIVE_PERIOD, _isOracleActive checks, etc.

4. Missing fallback functions

Severity: Major.
Simply, Portal and Withdrawal Credential Contracts don’t have fallback functions.

Mitigation:

Internally, the reasoning behind this issue is detected as “test contracts” of
external libraries. Portal has a lot of tests but mostly all of them utilize these test
contracts. So, even though coverage seemed good, we were testing with
contracts that contain fallback functions.

Now, all external libraries of Portal and WC are tested utilizing the real contracts.
Related test contracts are removed.

5. Maintainer can attack the Node Operator

Severity: Major.

Differently from the 9th issue of the Diligence report, a maintainer can uniquely
harm its owner.

When a faulty validator is proposed, the operator ID is imprisoned meaning the
owner’s access to the Portal is very limited. Thus, the Operator's CONTROLLER
can not change the maintainer and the maintainer can continue attacking
effectively making the ID useless forever.

Mitigation:

changeMaintainer function does not use authenticate function to prevent the
effects of any additional logic. Instead, it checks if the caller is CONTROLLER.

25

6. Fee donation may cause some serious problems

Severity: Major.

As a security measure, being able to manipulate the Liquidity Pool parameters
should be avoided. Furthermore, the fee donation process does not take the
market price but the oracle price into account, which makes things very difficult to
confirm.

Finally, this function is not only used by Portal while burning surplus, it is open to
access for everyone. There is a potential risk that price will be somehow
manipulated. This risk should not be taken by The Procol.

Mitigation:
Burning surplus is not allowed anymore.

7. Burning surplus causes disruption

Severity: Major.

Portal allows stakers to redeem collateral directly from not-yet-staked funds. This
is a good user experience. However, there are no queues or timelocks, making
things very hard for Operators.

An Operator can call proposeStake with 50 validators worth of data. At the end of
the day, it takes burning one wei worth of surplus for this transaction to be
grieved.

Mitigation:

Burning surplus is removed.

donateBalancedFees function from SwapUtils is removed. _burnSurplus,
_donateBalancedFees, and withdrawPlanet functions from StakeUtils are removed.
Additionally, this is very good because it introduced some other vulnerabilities by
donating fees, allowing frontrunners, collateral loss to arbitrage, etc.

26

8. Sanity check potential underflow issue

Sanity check allows up to x% daily decrease in the price taking the last update
timestamp as a reference. Here is the calculation:

uint256 minPrice = curPrice -
((curPrice * self.PERIOD_PRICE_DECREASE_LIMIT *
_periodsSinceUpdate) / PERCENTAGE_DENOMINATOR);

It is obvious that, if _periodsSinceUpdate is very long this calculation will start
underflowing, effectively making it impossible to update the prices again.

For example, if x is 5%, the permitted price decrease will be bigger than curPrice
after 20 days:

X-((x*5%20)/100) = O;

Taking the new(current) oracle logic into consideration, this calculation should be
handled with care because there are no enforced oracle updates and a pool can
choose to keep the old price until the end of the time.

Mitigation:
uint256 maxPricelncrease = ((curPrice *
*

dayPercentSinceUpdate) /

uint256 maxPriceDecrease = ((curPrice *

*

dayPercentSinceUpdate) /

require(
(_newPrice + maxPriceDecrease >= curPrice) && (_newPrice <= curPrice + maxPricelncrease),
"OU: price is insane"

);

27

9. Use _disablelnitializers function

Openzeppelin UUPS is utilized by Portal and WithdrawalContract. Furthermore, by
using clones, TransparentUpgradeableProxy is utilized by gEthinterfaces:
ERC20InterfaceUpgradable and ERC20InterfacePermitUpgradable.

Openzeppelin introduced an issue specifying that uninitialized implementation
contracts can cause a lot of problems.

Mitigation:

_disablelnitializers() function is added to the constructors of Portal,
withdrawalContract, ERC20InterfaceUpgradable, and
ERC20InterfacePermitUpgradable.

10. depositPlanet might fail because of swap(mingETH)

Simply, when a user calls the depositPlanet function of StakeUtils, mingETH is
provided as a parameter. mingETH represents a minimum on the returned geTH
amount. This limit applies to the total of minted and market-bought tokens.
However, the same parameter is passed to DWP if there is a debt. This call can fail
on partial buyback, even though minimum requirements would be met at the end
of the call.

Mitigation:
mingETH is used only at the end of the deposit operation, in a requirement state
comparing it with the geTH amount user will receive.

11.Withdrawal contract upgrades can be manipulated

The function to fetch the latest version of the Withdrawal Contract can be called
by anyone. There are 2 most important issues this will cause:

28

https://forum.openzeppelin.com/t/uupsupgradeable-vulnerability-post-mortem/15680

1.

Proposals expire, meaning if a pool controller wasn’t aware of the fetch
operation, it can never be upgraded to the latest version.

Fetching a proposal can be used to stop the pooling operations. Whenever
an upgrade proposal is fetched, it should be immediately approved. And
only the Senate, which is the pool owner, can approve a proposal.

Mitigation:
The pattern to upgrade the withdrawal contract is completely redesigned:

IGeodeModule is introduced, which consists of newProposal,
approveProposal, recoveryMode, and isUpgradeAllowed.

Both Portal and Withdrawal Contract inherit IGeodeModule, allowing them
to communicate and operate smoothly.

When a fetchModuleUpgradeProposal function from the Portal is called by
any module, Portal takes the current defaultModule for the given TYPE and
calls newProposal on the caller.

Then, the proposal can be accepted or rejected by the caller.

In case of the Withdrawal Contract, fetchUpgradeProposal should be called
by the Owner.

Proposal is approved and the contract is upgraded immediately after the
fetch operation.

Notably, fetchUpgradeProposal checks for Portal's recoveryMode before
getting in touch with the Portal, as it was intended.

With this setup, only the Owner can call the upgrade proposal and there is no time
spent between fetch and upgrade.

12.

Portal can not pause or unpause geTH

gETH has Pausability: pause and unpause. However, Portal does not have
respective functions for Governance to use them. These circuit breakers can be
useful in case something went wrong.

Mitigation:
Mentioned functions are added to the Portal with onlyGovernance modifier
protection.

29

13. Potential Governance Attacks

While the project is designed and marketed with the core idea of Limited
Upgradability and Dual Governance, which in effect means that Governance can
not attack, harm, or grieve the smart contracts without the permission of a
Senate, this is not completely accurate.

Portal has a updateStakingParams function which allows Governance to change
some parameters. Note that these parameters are very important and not
ignorable or well-protected.

1. _DEFAULT_gETH_INTERFACE can be changed to steal user funds.

2. _MAX_MAINTAINER_FEE can be decreased to 0% without any checks
effectively removing the functionality.

3. _PERIOD_PRICE_INCREASE_LIMIT or _PERIOD_PRICE_DECREASE_LIMIT can
be decreased to 0%, effectively preventing the price updates.

Mitigation:

All these parameters and many more are already removed from StakeUtils and
OracleUtils libraries. There is no need to have an updateStakingParams function
anymore, and it is removed.

Now, governance can not set any crucial parameters without upgrade proposals.

14. Faulty alienation

When a validator is alienated, changes on the pool variables surplus and secured
are reverted. However, some parameters like proposedValidators are not changed.

Similarly, proposeStake includes the validator in the pool’s “validators” array. This
would be ok if there was a way to remove the elements from arrays. Since there is
no way to revert this change in case of a faulty validator proposal, it should be
included in beaconStake function.

Mitigation:

_alienateValidator function is fixed and checks for respective parameters now.
Validator pubkey is added to the pool’s array on beaconStake.

30

15. Utilize gETH avoiders in the contracts

Severity: Minor.

gETH avoiders logic is designed to give any address the freedom to protect itself
from malicious interfaces. However, the Team is not using avoiders in their
contracts and not following their own best practices.

Portal, Liquidity Pool, and Withdrawal Contracts can and must have some gETH at
some point in their operations. And there is no reason for an interface to use them,
as there is no ERC20 functionality.

Protect your user funds.

Mitigation:

Both Portal and Swap contracts have avoiders now.
Liquidity Pool avoids when the contract is initialized.
Portal avoids when the Pool is initialized.

16. Swap.sol should use fixed arrays to save gas

Self-explanatory.
Mitigation:

Swap and SwapUtils now utilize static arrays with length 2.

17.Using a password and hash is not vulnerable, but inappropriate

Severity: Minor.

Self-explanatory.

Mitigation:

Maintainer - Controller separation is now very well defined in StakeUltils:

e CONTROLLER: owns and controls.
e maintainer: automates, optimizes, and serves.

31

WithdrawalContract’s owner is the pool's Controller. There is a possibility that the
two can be different if not changed simultaneously. In that case, the
withdrawalContract will go under recoveryMode, signaling Portal to seize minting
and staking operations.

18. DataStore is not accessible

The idea behind the DataStore is to provide easy and manageable read-write
operations. However, it seems like the team forgot this and implemented batch
read functions such as getPlanet, getComet, getOperators, etc.

There are even single functions for parameters like fee, validatorPeriod, etc.

Mitigation:
Read functions are now exposed in the Portal.
Other related single and batch read functions are removed.

19. High MONOPOLY_RATIO

Portal aims to prevent Monopolies within its operator marketplace, thus any
operator with more validators than a certain threshold can not create additional
validators.

However, this parameter is set to 5%. Which is not remotely even close to
preventing monopolies.

Mitigation:
MONOPOLY_RATIO parameter is now 1%.

32

20. Flawed Upgradability Pattern

When Portal or WithdrawalContract is upgraded to a newer version, it is advised
to set DualGovernance’s approvedUpgrade to address(0). Notably, implemented
initialize functions contain this logic.

This would be a small issue, but some dire consequences surface if this advice is
not followed.

Mitigation:

The method of _setContractVersion which is included by both contracts, is
modified.

Additionally, isUpgradeAllowed function of geodeUtils now checks for proposed
implementation and current implementation. Address of the current
implementation can always be reached with UUPS._getimplementation().

21. Flawed Architecture: Nested Libraries

StakeUtils and OracleUtils:

Expected behavior: StakeUtils to contain the functionality around pooling and
staking operations and OracleUtils to contain the functionality around the oracle
operations.

However, OracleUtils is effectively nested within StakeUtils. StakeUtils struct has a
parameter called Telescope, which is the struct of OracleUtils.

OracleUtils includes unrelated functions like _canStake, while Stakeutils has a
function with the same name. These functions are doing different things...

The relation between these two libraries is obviously positioned wrong and causes
some problems within the codebase.

Mitigation:

OracleUtils struct is removed. The Library is cleaned up of unnecessary
complexity, and unrelated functionality and downgraded into 3 functions and its
internal helpers.

OracleUtils is importing StakeUtils now. Effectively, StakeUtils is not even aware
that OracleUtils exist.

33

22. Flawed Architecture: Arbitrary Inheritance

DataStore and MaintainerUtils:

DataStore is a simple storage pointer that allows contract storage to be isolated
based on keys and IDs. This in effect creates arbitrary structs with an infinite
number of parameters, which is good.

It is documented that MaintainerUtils provides a base class for some types like
pools and operators. They inherit this arbitrary functionality to have maintainers.
On top of this, the maintainer is a child class of DataStore; which, in effect, is
extended by geodeUtils library to retain a base functionality of TYPE and
CONTROLLER.

The structure is not well-defined and explicit. It is a safety risk to create arbitrary
inheritances between unrelated libraries.

On top of this, no instance of the maintainerUtils can be seen in StakeUtils
because this arbitrary inheritance is used to call the functions from
MaintainerUtils, with a DataStore pointer. Which does not make any sense and
makes things very difficult to review.

Mitigation:
Maintainer logic is revised, and MaintainerUtils library is removed. Some functions
are moved into StakeUtils and most are deleted.

Arbitrary inheritance between maintainers, controllers, IDs, Pools, and Operators
is removed from the codebase and the documentation.

Now, maintaineris not really different from another parameter, like fee. Can be
utilized by the pools and operators to automate and optimize workflows, well
protected and very limited.

Code is much easier to read and understand.

34

Post-Audit Improvements

Post Audit Improvements

1. Simplified Terminology

gETH
gETH
Swap
DataStoreUtils

DataStoreUtils

GeodeUtils >
DataStoreUtils

GeodeUtils
GeodeUtils
GeodeUtils
GeodeUtils
StakeUtils
StakeUtils
StakeUtils
StakeUtils
StakeUtils
StakeUtils
WithdrawalContract

WithdrawalContract

_interfaceAvoiders

ERC1155Interfaces

Dynamic Withdrawal Pools

DataStore

readUintForld, etc.
getldFromName

Universe

Senate Elections
_proposalForld
GOVERNANCE_TAX
StakePool

Planet / Comet
depositPlanet
maintainerFee
maintainerWallet
getVersion
MiniGovernance

IsolationMode

_avoiders
gETHInterfaces
Liquidity Pools
IsolatedStorage

readUint, etc.
generateld

DualGovernance

** removed **
_proposals
GOVERNANCE_FEE
PooledStaking

Pool

deposit
maintenanceFee
wallet
getContractVersion
WithdrawalContract

recoveryMode

List of notable terminology changes is provided above. Additionally, related
parameters, functions and folder names have changed respectively.

Geode Finance has a space theme. Previously, The Protocol has also followed this

theme in its terminology. Smart Contracts and libraries were filled with arbitrary

naming conventions, which don’t rely on any reasoning other than design choices.

Code readability and reliability has increased by removing all arbitrary naming
conventions from the codebase.

Furthermore, a lot of functionality is removed from the contracts, and some
contracts can contain different functionalities now.

2. Code Complexity, Sustainability and Readability

The reviewed version of The Protocol contained many non-trivial functionalities.

These functionalities were either experimental or poorly executed. Many issues
identified on external and internal audits were mostly originated from these
functionalities.

Moreover, there were a lot of issues caused by the vague boundaries of libraries.

Best code practices were not followed and interactions between libraries were
unorganized. Most of them are mitigated now.

During the post-audit period, the most important commitments of the Team were:

Providing a secure implementation

Removing non-trivial or experimental methods
Improving the user experience

Improving the developer experience
Simplifying the codebase

aE WS

To achieve these objectives, some precautions were taken:

1. Introduced globals.sol

2. Removed the MaintainerUtils library, revised the maintainer logic

3. Utilizes the DataStoreUtils view functions in Portal, instead of getters for
arbitrary structs, such as getPlanet, getOperator.

36

8.
9.

Removed the Dynamic Withdrawals logic, and withdrawalBoost related
effects.

Removing the 3-step validator withdrawal process: signal-oracle-fetch.
Simplifying the Initiators.

Simplifying the Oracle operations and separating it from operations related
to StakeUtils.

Removing Senate Elections.

Not allowing the surplus to burn.

10. Converting approveOperators to batchApproveOperators

We have stated the limits of the abstract definitions explicitly, removed vague
permissions and inheritance based understanding of the separated parties; like
controllers and maintainers, planets and operators...

3. Improved Trustlessness and Security Assessment

The team has been working on The Protocol to ensure having the best
trustlessness among all parties, and designed robust upgradability patterns and
proper circuit breakers.

Bwn S

)
.

updateStakingParams is removed from Portal.

Circuit Breakers are implemented.

Maintainers are nerfed.

Senate can contain any functionality and is not limited to votes anymore.

Rogue Actors
a. What'd be the extent of a rogue Governance?

Governance can conduct a hostile takeover, only when the Senate is expired.

b. What'd be the extent of a rogue Senate?

Denial of service until it expires, this can take at most one year to resolve.

c. What'd be the extent of a rogue Pool Controller?

Nothing, Pool Controllers do not have access to the underlying collateral.

37

d. What'd be the extent of a rogue Operator Controller?

Malicious Operators can conduct griefing attacks causing stakers to lose principal.

e. What'd be the extent of a rogue maintainer for Pools?

Losing potential profit by choosing bad operators or refusing to choose operators.

f. What'd be the extent of a rogue maintainer for Operators?

Operators can get imprisoned as a result of the actions of a rogue maintainer.
However, Governance can bail out the operators, if reasonable.

2. Hacks

a. What'd be the extent if gETH is hacked and what are the circuit
breakers in place?
Protocol-wide losses, no loss on the principal(staked ether).
It would probably affect any protocol that integrated with geTH.
gETH can be paused/unpaused by Governance.

b. What'd be the extent if Portal is hacked and what are the circuit
breakers in place?
Minimal losses.
Only, the internal wallets of the operators and pool owners and the ether
that is waiting to be staked can be harmed.
Portal can be paused/unpaused by Governance.

c. What'd be the extent if A Liquidity Pool is hacked and what are the
circuit breakers in place?,
Up to 100% of the funds provided as liquidity can be lost.
Liquidity Pools can be paused by Governance, for now.

d. What'd be the extent if A withdrawal Contract is hacked and what
are the circuit breakers in place?

Varying level of losses:

There is mostly almost no money kept in the withdrawal contracts, a small
attack wouldn’t cause a lot of issues.

But if the contract is hacked with a way to lock the funds, or prevent
upgrades, then all funds related to the pool can be lost.

Withdrawal Contracts can be paused by Pool Controllers.

38

Portal.sol |

gETH.sol

ERC20InterfacePermitU
pgradable.sol

ERC20InterfaceUpgrad
able.sol

LPToken.sol

Swap.sol

MathUtils.sol
SwapUtils.sol

DataStoreUtilsLib.sol

DepositContractUtilsLib
.sol

95.83 87.50

S 93.33 | 93.75 . -
StakeUtiisLib.sol o057 92.25 10000 10000 [N IR

GeodeUtilsLib.sol

OracleUtilsLib.sol

o[855 oo
WithdrawalContract.sol ---

w
(]

Conclusion

The Team is exceedingly satisfied with the review conducted by the Consensys
Diligence auditors.

The Protocol is very suitable for future improvements that won't require a lot of
changes to the existing contracts. Upgradability patterns exercised within The
Protocol were designed with this very idea in mind. Considering the modular
architecture of The Protocol, and the customizability of its products, it is obvious
that there will be many audit necessities in the future.

Ideally, the Team is keen to continue working with Consensys Diligence for any
future audits and establish an internal partnership.

Thus, the Team decided to move forward with Consensys Diligence for a
follow-up audit that will be conducted prior to the launch of The Protocol on
Ethereum Mainnet.

While the details are not finalized, a follow-up audit will be conducted.

Most of the modifications can be classified as simple improvements, refactoring of
the existing code, and functional deductions which are not effectively breaking.
Collectively, these modifications helped create smart contracts that work
smoother, are easier to review, and more secure. Finally, the test coverage is
boosted up to nearly 100% on many smart contracts and the Team will continue
improving it before the mentioned Mainnet launch.

With the above reasoning, the Team conducted an internal review to identify the
risk profile of the smart contracts. The internal review ended as of March 16,
2023. Many small issues were detected and mitigated, the codebase was
finalized. In conclusion, the review identified 2 smart contracts that require a
follow-up audit:

1. StakeUtils.sol, which contains functionality for The Staking Library.
2. OracleUtils.sol, which contains functionality for the Oracle operations.

Finally, a comprehensive internal audit is being conducted and will be finalized
before the 10th of April, the start date of the follow-up audit. The team expects

40

the audit to start with more additional documentation and at most some minor
changes.

The Team hereby confirms that all of the changes that need to be reviewed were
documented in this report.

41

