
Geode
Finance
SECURITY REVIEW
Date: 18 July 2023

Your smart contracts, our shielding

CONTENTS

1. About Shieldify

2. Disclaimer

3. About Geode Finance

4. Risk classification
4.1 Impact
4.2 Likelihood

5. Audit Summary
5.1 Protocol Summary
5.2 Scope

6. Findings Summary

7. Findings

3

3

3
4
4
4

4
5
5

5
7

2

1. About Shieldify

We are Shieldify Security – a company on a mission to make web3 protocols more secure, cost-
efficient and user-friendly. Our team boasts extensive experience in the web3 space as both smart
contract auditors anddevelopers thathaveworkedon top 100blockchainprojectswithmulti-million
dollars inmarket capitalization.

Book an audit and learnmore about us at shieldify.org or@ShieldifySec

2. Disclaimer

This security review does not guarantee bulletproof protection against a hack or exploit. Smart con-
tracts are a novel technological feat with many known and unknown risks. The protocol, which this
report is intended for, indemnifies Shieldify Security against any responsibility for any misbehavior,
bugs, or exploits affecting the audited codeduring any part of the project’s life cycle. It is also pivotal
toacknowledgethatmodificationsmadetotheauditedcode, including fixes for the issuesdescribed
in this report, may introduce new problems and necessitate additional auditing.

3. About Geode Finance

Geode Finance is a novel protocol that offers a staking solution for DAOs to facilitate ETH2 staking
to their users. It archives that by enabling any organization to be able to create their own, branded
public or private staking pool, removing large development and R&D costs for DAOs and organiza-
tions, enabling them to run their own staking as a service offering, quickly and easily, and most im-
portantly in a fully trustlessmanner. The protocol utilizes modular architecture, making things safer
for stakers, and easier for pool providers.

Learnmore about Geode’s concept and the technicalities behind it here.

TheMost Crucial Component - the Portal

ThePortal is the beating heart of the Geode protocol. Here are some of its most important features
and functionalities:

• Creation andmaintenance of the configurable staking pools.
• Minting new tokens.
• Securing the Ether until it is staked in a validator.
• Onboarding newOperators to themarketplace.
• Management and regulation of theOperator marketplace.
• Allowing new functionalities to be implemented with ease.
• Securing its own codebase fromGovernance.
• Various tasks of Oracle.

These aims are achieved by:

• Isolated Storage Implementation
• Dual Governance
• LimitedUpgradability

3.1. Observations

• Geode Finance cannot upgrade the source code of its contract infrastructure without the ap-
provalof itsusers. LimitedUpgradability isusedwithin thePortal,WithdrawalContractandLiq-
uidity Pool.

3

• PoolMaintainers can not steal pool fees or pool funds.
• Using Geode Finance’s liquidity pool allow your stakers to move their funds between different
staking derivatives in just one transaction, withminimal slippage.

• Geode Finance doesn’t collect any admin fees on their liquidity pools.
• Geode charges0% staking-as-a-service fee, and can not change this until March 2025with-
out the approval of Portal’s Senate.

• Pool Owners can charge up to a 10% fee of the yield for maintenance of the pool.
• For the process of changing the pool’s owner there are the following warning checks:

1. “Double check the address of your newController.”
2. “If your Pool’s owner is not the withdrawal pool’s Owner, it will go into Recovery Mode until

you change its ownership:”
3. “Changing your controller is easy, however, it will override the ability of the previous con-

troller immediately.”

• When the pool’s fee is changed, it takes 3 days for the new fee to take effect. Within this 3-day
period, the fee cannot be changed again.

• At any given point, a staking pool can have 1 maintainer at most.

4. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood:Medium High Medium Low

Likelihood: Low Medium Low Low

4.1 Impact

• High - results in a significant risk for the protocol’s overall well-being. Affects all or most users
• Medium - results in a non-critical risk for the protocol affects all or only a subset of users, but
is still unacceptable

• Low - losses will be limited but bearable - and covers vectors similar to griefing attacks that
can be easily repaired or even gas optimization techniques

4.2 Likelihood

• High - almost certain to happen and highly lucrative for execution bymalicious actors
• Medium - still relatively likely, although only conditionally possible incentivize
• Low - requires a unique set of circumstances and poses non-lucrative cost-of-execution to
rewards ratio for the actor

5. Audit Summary

The audit duration lasted three and a half weeks and a total of 72 person days have been spent by
the three auditors - @ShieldifyMartin, @ShieldifyAnon and @ShieldifyGhost. The project has un-
dergone several audits (both external and internal) prior to this one. It is important to acknowledge
that there is still somecode that needs to be implemented. Overall, wewould like to congratulate the
Geode team for the amazing feat that they have accomplished - creating and maintaining such a
large and complex codebasewith only two developers!With someminor exceptions, the code is very
well-documented and written. The test coverage is also comprehensive.

4

Last but not least, we would like to emphasize that the Geode team has been very communicative
and provided detailed answers to all of our questions.

5.1 Protocol Summary

Project Name Geode Finance

Repository Portal-Eth

Type of Project Decentralized & Liquid Staking Pools

Audit Timeline 25 days - June 8th - July 2nd

ReviewCommit Hash e626ed341a723095c6d22fbfc84081cf7b999e1b

Fixes Review Commit Hash 140f849b2b44cb11ef5edde5533f09c1f0407b14

5.2 Scope

The following smart contracts were in the scope of the audit:

File nSLOC
contracts/Portal/gETH.sol 110
contracts/Portal/middlewares/ERC20PermitMiddleware.sol 52
contracts/Portal/middlewares/ERC20Middleware.sol 120
contracts/Portal/modules/DataStoreModule/libs/DataStoreModuleLib.sol 94
contracts/Portal/modules/DataStoreModule/DataStoreModule.sol 40
contracts/Portal/modules/GeodeModule/libs/GeodeModuleLib.sol 111
contracts/Portal/modules/GeodeModule/GeodeModule.sol 89
contracts/Portal/modules/StakeModule/libs/DepositContractLib.sol 64
contracts/Portal/modules/StakeModule/libs/StakeModuleLib.sol 612
contracts/Portal/modules/StakeModule/libs/OracleExtensionLib.sol 139
contracts/Portal/modules/StakeModule/StakeModule.sol 184
contracts/Portal/modules/LiquidityModule/libs/LiquidityModuleLib.sol 507
contracts/Portal/modules/LiquidityModule/libs/AmplificationLib.sol 57
contracts/Portal/modules/LiquidityModule/LiquidityModule.sol 149
contracts/Portal/packages/LiquidityPool.sol 111
contracts/Portal/packages/WithdrawalContract.sol 70
contracts/Portal/Portal.sol 89
Total 2598

6. Findings Summary

The following number of issues have been identified, sorted by their severity:

• Critical andHigh issues:0
• Medium issues:0
• Low issues:5

5

• Informational issues: 17
• GasOptimization issues:9

ID Title Severity
[L-01] Wrong Storage Gap ValueMay Break Storage Layout in New Con-

tract Version
Low

[L-02] Essential Roles Setter Functions Implement Single-Step Role
Transfer

Low

[L-03] Protocol will not Work on Most of the Supported Blockchains due
to hardcoded DEPOSIT_CONTRACT Address

Low

[L-04] Usage of abi.encodePacked Instead of abi.encode Low
[L-05] Missing Zero Address Check for changeSenate Function Low
[I-01] The deposit Function Expecting ETH Deposits can check msg.

value for Sanity andOptimization
Informational

[I-02] Usecalldata Insteadofmemory forFunctionArguments thatdonot
getMutated

Informational

[I-03] ThenonReentrantModifier shouldOccurBeforeall otherModifiers Informational
[I-04] Create aModifier Only if it will be Used inMore thanOnePlace Informational
[I-05] Move theDuplicate Checks into aModifier Informational
[I-06] Unused Imports Affect Readability Informational
[I-07] Missing ErrorMessages in require and revertStatements Informational
[I-08] Hardcoded Timestamp Value Should be aConstant Informational
[I-09] Change Function Visibility from public to external Informational
[I-10] Use 1e18 Instead of 10**18 Informational
[I-11] Use require Instead of assert Informational
[I-12] Use aMore Recent Solidity Version Informational
[I-13] FunctionOrdering does not Follow the Solidity Style Guide Informational
[I-14] Update External Dependency to the Latest Version Informational
[I-15] Missing/Incomplete NatSpecComments Informational
[I-16] Open TODOs Informational
[I-17] Typos in Require Statement andContract Comments Informational
[G-01] Using »1 Instead of /2CanSaveGas GasOptimization
[G-02] Using Booleans for Storage Incurs Overhead GasOptimization
[G-03] Use Assembly to Check for address(0) GasOptimization
[G-04] Splitting require()Statements that Use ‘&&‘ SavesGas GasOptimization
[G-05] NoNeed to Initialize Variables with Default Values GasOptimization
[G-06] Use custom errors Instead of require()with Revert Strings GasOptimization
[G-07] Expressions for constant Values Such as a Call to keccak256(),

Should Use immutableRather than constant
GasOptimization

[G-08] Array Length Read in Each Iteration of the LoopWastesGas GasOptimization
[G-09] Replace Constant Variables public Visibility with private or

internal
GasOptimization

6

7. Findings

[L-01]WrongStorageGapValueMayBreakStorageLayout inNewCon-
tract Version

Severity

LowRisk

Description

LiquidityPoolandWithdrawalContract implementsstoragegap,whichpreventsstoragecollisions
in new versions. However, they are meant to be 50 storage-slots-reserved by the standard. Only
complyingwith it saves fromstorage collisions, otherwise, they are still possible after the upgrade.

1. In the case of LiquidityPool contract, there are 3 slots reserved for addressing internal im-
mutables, and the __gap is 47 elements long.

2. In thecaseofWithdrawalContractcontract, thereare2 slots reservedforaddressing internal
immutables, and the __gap is 48 elements long.

Location of Affected Code

File: contracts/Portal/packages/LiquidityPool.sol#L276

/**
* @notice keep the total number of variables at 50
*/
uint256[47] private __gap;

File: contracts/Portal/packages/WithdrawalContract.sol#L143

/**
* @notice keep the total number of variables at 50
*/
uint256[48] private __gap;

Recommendation

This calculation is wrong in both contracts and the slot will be 0 and will be equal to 50.

The reason for this is that the compiler doesn’t reserve a storage slot forconstant / immutable vari-
ables, rather than copying the value of that variable everywhere in the code where that particular
value is used.

It’s also recommended to useOpenZeppelin’s Upgrade Plugin.

TeamResponse

Acknowledged, will bemitigated.

7

[L-02] Essential Roles Setter Functions Implement Single-Step Role
Transfer

Severity

LowRisk

Description

It’s possible to lose these roles under specific circumstances. Because of human error, it’s possible
to set a new invalid address. When you want to change the address it’s better to propose a new one,
and then accept the ownership with the newwallet.

Location of Affected Code

File: contracts/Portal/gETH.sol

function transferUriSetterRole(
address newUriSetter

) external virtual override onlyRole(URI_SETTER_ROLE) {

function transferPauserRole(address newPauser) external virtual override
onlyRole(PAUSER_ROLE) {

function transferMinterRole(address newMinter) external virtual override
onlyRole(MINTER_ROLE) {

function transferOracleRole(address newOracle) external virtual override
onlyRole(ORACLE_ROLE) {

function transferMiddlewareManagerRole(
address newMiddlewareManager

) external virtual override onlyRole(MIDDLEWARE_MANAGER_ROLE) {

File: contracts/Portal/modules/GeodeModule/libs/GeodeModuleLib.sol

function changeSenate(DualGovernance storage self, address _newSenate)
external onlySenate(self) {

function changeIdCONTROLLER(
DSML.IsolatedStorage storage DATASTORE ,
uint256 id,
address newCONTROLLER

) external onlyController(DATASTORE , id) {

Recommendation

Consider using a 2-step process, approve and claim in two different transactions, instead of a
single-step approach. Implement a timelock for important set actions if necessary. Additionally,
Whitelist and LPToken contracts should use Ownable2Step and Ownable2StepUpgradeable instead
of Ownable and OwnableUpgradeable.

8

TeamResponse

A meaningful concern. However, we are keen to keep this structure, as gETH roles will be owned by
the smart contracts, whichmakes it hard to use with 2 step transfers.

Acknowledged, will not bemitigated.

[L-03]Protocolwill notWorkonMostof theSupportedBlockchainsdue
to hardcoded DEPOSIT_CONTRACTAddress

Severity

LowRisk

Description

This vulnerability has the potential to affect smart contracts that depend on hardcoded addresses
for external contracts, particularly inmulti-chain deployments. In situations where the addresses of
the referenced contracts are altered or the deployment occurs on a different chain, the contracts
may encounter difficulties in interacting with the intended contracts and routers, resulting in erro-
neous behavior and potential malfunctions.

Theprotocolwill notworkonmostof thesupportedblockchainsduetothehardcodedDEPOSIT_CONTRACT
address.

Location of Affected Code

File: contracts/Portal/modules/StakeModule/libs/DepositContractLib.sol#L27

IDepositContract internal constant DEPOSIT_CONTRACT = IDepositContract(0
xff50ed3d0ec03aC01D4C79aAd74928BFF48a7b2b);

Recommendation

To mitigate this vulnerability, it is advisable to pass the DEPOSIT_CONTRACT as constructor parame-
terswhendeploying the contract instead of relying on fixed addresses. By allowing the addresses to
be configured during deployment, the smart contracts can be utilized across various networks and
effectively accommodate changes in contract addresses.

TeamResponse

We agree that this is an issue that can cause some problems. However, we are keen to use different
repositories for different chains asmost of thePoS implementations areuniqueandwhen thechain
changes, many other parts also need to change. Acknowledged, will not bemitigated.

[L-04] Usage of abi.encodePacked Instead of abi.encode

Severity

LowRisk

9

Description

The generateID function takes a bytes variable with dynamic size, together with a uint256 variable.
These arguments are abi encodedandhashed together to produceauniquehash. However, packing
differently-sized argumentsmay produce collisions.

TheSoliditydocumentationstates thatpackingdynamic typeswill producecollisions, but this isalso
the case if packing bytes, (which is a shorthand for byte[]) and uint256.

Location of Affected Code

File: contracts/Portal/modules/DataStoreModule/libs/DataStoreModuleLib.sol#L68

id = uint256(keccak256(abi.encodePacked(_name, _type)));

Recommendation

Unless there’s a specific use case to use abi.encodePacked, you should always use abi.encode.
You might need a few more bytes in the transaction data, but it prevents collisions. Additionally,
abi.encode() pads items to 32 bytes, which will prevent hash collisions (e.g. abi.encodePacked(0
x123, 0x456)=> 0x123456 => abi.encodePacked(0x1, 0x23456), but abi.encode(0x123,0x456)0
x0...1230...456).

TeamResponse

Acknowledged, will bemitigated.

[L-05]Missing Zero Address Check for changeSenate Function

Severity

LowRisk

Description

Contract GeodeModule is missing address validation for the setter function - changeSenate(). It is
possible to configure the address(0), whichmay cause issues during execution.

For instance, if address(0) is passed to changeSenate() function, it will not be possible to change
this address in the future.

Location of Affected Code

File: contracts/Portal/modules/GeodeModule/GeodeModule.sol#L241-L243

function changeSenate(address _newSenate) external virtual override {
GEODE.changeSenate(_newSenate);

}

Recommendation

Add a zero-address check on _newSenate parameter of changeSenate().

10

TeamResponse

Acknowledged, will bemitigated.

[I-01] The deposit Function Expecting ETH Deposits can check
msg.value for Sanity and Optimization

Severity

Informational

Description

The function that expects ETH deposits in their typical flows can check for non-zero values of msg.
value for sanity and optimization.

Location of Affected Code

File: contracts/Portal/modules/StakeModule/StakeModule.sol#L398-L419

function deposit(
uint256 poolId,
uint256 price,
bytes32[] calldata priceProof ,
uint256 mingETH,
uint256 deadline ,
address receiver

)
external
payable
virtual
override
whenNotPaused
nonReentrant
returns (uint256 boughtgETH , uint256 mintedgETH)

{
if (!STAKE.isPriceValid(poolId)) {

STAKE.priceSync(DATASTORE , poolId, price, priceProof);
}

(boughtgETH , mintedgETH) = STAKE.deposit(DATASTORE , poolId, mingETH,
deadline , receiver);

}

Recommendation

It is recommended to add msg.value check.

++ if (msg.value == 0) revert("StakeModule: msg.value must be non-zero");

TeamResponse

Acknowledged, will be implemented.

11

[I-02] Use calldata Instead of memory for Function Arguments that do
not getMutated

Severity

Informational

Description

Mark data types as calldata instead of memorywhere possible. This makes it so that the data is not
automatically loaded into memory. If the data passed into the function does not need to be changed
(like updating values in an array), it can be passed in as calldata. The one exception to this is if the
argument must later be passed into another function that takes an argument that specifies memory
storage.

Location of Affected Code

File: contracts/Portal/helpers/ERC1155PausableBurnableSupply.sol#L646

function setURI(string memory newuri) public override onlyRole(
URI_SETTER_ROLE)

Recommendation

It is recommended tomark the data type as calldata instead of memory.

TeamResponse

Acknowledged, will be implemented.

[I-03] The nonReentrant Modifier should Occur Before all other Modi-
fiers

Severity

Informational

Description

This is a best practice to protect against re-entrancy in other modifiers. It can additionally reduce
gas costs if this modifier occurs before all others.

If a functionhasmultiplemodifiers theyareexecuted in theorderspecified. If checksor logicofmod-
ifiers depend on other modifiers this has to be considered in their ordering. Some functions have
multiplemodifierswithoneof thembeingnonReentrantwhichprevents reentrancyon the functions.
This should ideally be the first one to prevent even the execution of other modifiers in case of reen-
trancies.

12

Location of Affected Code

File: contracts/Portal/Portal.sol#L213

function pushUpgrade(
uint256 packageType

) external virtual override whenNotPaused nonReentrant returns (uint256
id)

File: contracts/Portal/modules/StakeModule/StakeModule.sol#L398

function deposit(
uint256 poolId,
uint256 price,
bytes32[] calldata priceProof ,
uint256 mingETH,
uint256 deadline ,
address receiver

)
external
payable
virtual
override
whenNotPaused
nonReentrant
returns (uint256 boughtgETH , uint256 mintedgETH)

File: contracts/Portal/modules/StakeModule/StakeModule.sol#185

function initiateOperator(
uint256 id,
uint256 fee,
uint256 validatorPeriod ,
address maintainer

) external payable virtual override whenNotPaused nonReentrant

File: contracts/Portal/modules/StakeModule/StakeModule.sol#185

function increaseWalletBalance(
uint256 id

) external payable virtual override whenNotPaused nonReentrant returns (
bool)

Recommendation

Reorder themodifiers so that nonReentrant is first in line.

TeamResponse

Very good improvement will be implemented.

13

[I-04] Create aModifier Only if it will be Used inMore than One Place

Severity

Informational

Description

There is no need to create a separatemodifier unless it will be used in more than one place. If this is
not the case, simply add themodifier code to the function instead.

Location of Affected Code

File: contracts/Portal/modules/GeodeModule/libs/GeodeModuleLib.sol#L301

modifier onlyController(DSML.IsolatedStorage storageDATASTORE , uint256 id
) {

require(msg.sender == DATASTORE.readAddress(id, rks.CONTROLLER), "GML:
CONTROLLER role needed");

_;
}

File: contracts/Portal/packages/WithdrawalContract.sol#L107

modifier onlyOwner() {
require(msg.sender == GEODE.SENATE, "LPP:sender NOT owner");
_;

}

Recommendation

Add themodifier logic into the function directly.

TeamResponse

Acknowledged, will not be implemented.

[I-05]Move the Duplicate Checks into aModifier

Severity

Informational

Description

In both safeTransferFrom and burn functions there is a check that the caller is the token owner or
approved address. These checks can be extracted as a modifier that expects address as an input
parameter. Extracting checks into a modifier and reusing it in Solidity can provide several benefits,
including code reusability, readability, and easier maintenance.

14

Location of Affected Code

File: contracts/Portal/gETH.sol#L378-L383

function safeTransferFrom(
address from,
address to,
uint256 id,
uint256 amount,
bytes memory data

) public virtual override {
require(

(from == _msgSender()) ||
(isApprovedForAll(from, _msgSender())) ||
(isMiddleware(_msgSender(), id) && !isAvoider(from, id)),

"ERC1155: caller is not token owner or approved"
);
_safeTransferFrom(from, to, id, amount, data);

}

File: contracts/Portal/gETH.sol#L394-L399

function burn(address account, uint256 id, uint256 value) public virtual
override {

require(
(account == _msgSender()) ||

(isApprovedForAll(account, _msgSender())) ||
(isMiddleware(_msgSender(), id) && !isAvoider(account, id)),

"ERC1155: caller is not token owner or approved"
);

_burn(account, id, value);
}

Recommendation

Extract the checks in a separatemodifier.

TeamResponse

Very good suggestion, however, we are not keen to modify OpenZeppelin’s code more than neces-
sary.

[I-06] Unused Imports Affect Readability

Severity

Informational

Description

There are a fewunused imports on thecodebase. These imports should becleanedup from thecode
if they have no purpose.

15

Location of Affected Code

File: contracts/Portal/packages/LiquidityPool.sol

// import {IgETH} from "../interfaces/IgETH.sol";
import {IGeodePackage} from "../interfaces/packages/IGeodePackage.sol";
import {DataStoreModuleLib as DSML} from "../modules/DataStoreModule/libs

/DataStoreModuleLib.sol";

File: contracts/Portal/packages/WithdrawalContract.sol#L12-L14

import {DataStoreModuleLib as DSML} from "../modules/DataStoreModule/libs
/DataStoreModuleLib.sol";

import {GeodeModuleLib as GML} from "../modules/GeodeModule/libs/
GeodeModuleLib.sol";

import {WithdrawalModuleLib as WML} from "../modules/WithdrawalModule/
libs/WithdrawalModuleLib.sol";

File: contracts/Portal/modules/GeodeModule/libs/GeodeModuleLib.sol#L5

import {PERCENTAGE_DENOMINATOR} from "../../../globals/macros.sol";

File: contracts/Portal/modules/GeodeModule/GeodeModule.sol#L5

import {ID_TYPE} from "../../globals/id_type.sol";

Recommendation

Remove the unused imports.

TeamResponse

Good call, will be fixed.

[I-07]Missing ErrorMessages in require and revertStatements

Severity

Informational

Description

When encountering transaction failures or unexpected behavior, the utilization of informative er-
ror messages is beneficial for troubleshooting exceptional conditions. Otherwise, inadequate error
messagescan lead toconfusionandunnecessary delaysduringexploits or emergencysituations.

Location of Affected Code

File: contracts/Portal/modules/StakeModule/libs/StakeModuleLib.sol#L456

require(versionId > 0);

File: contracts/Portal/modules/StakeModule/libs/OracleExtensionLib.sol#L414-L415

16

require(poolIds.length == prices.length);
require(poolIds.length == priceProofs.length);

File: contracts/Portal/modules/StakeModule/StakeModule.sol#L112-L113

require(_gETH != address(0));
require(_oracle_position != address(0));

File: contracts/Portal/modules/LiquidityModule/libs/LiquidityModuleLib.sol#L717

revert();

Recommendation

Consider adding a descriptive reason in an error string/custom error.

TeamResponse

Good call, will be fixed.

[I-08] Hardcoded Timestamp Value Should be a Constant

Severity

Informational

Description

1714514461 from the Location of Affected Code section does not clearly state that it represents
a date, associated with a check for the taxes.

Location of Affected Code

File: contracts/Portal/Portal.sol#L179

require(block.timestamp > 1714514461, "PORTAL:not yet.");

Recommendation

Consider defining the timestamp as a constant and give it a descriptive name, as that would improve
code readability.

TeamResponse

Good call, will be fixed.

[I-09] Change Function Visibility from public to external

Severity

Informational

17

Description

It is best practice to mark functions that are not called internally as external instead, as this saves
gas (especially in the case where the function takes arguments, as external functions can read ar-
guments directly from calldata instead of having to allocate memory).

Location of Affected Code

Most smart contracts.

Recommendation

Consider changing the visibility of functions that are not used with the contract from public to
external.

TeamResponse

Acknowledged, will be considered.

[I-10] Use 1e18 Instead of 10**18

Severity

Informational

Description

It is recommended to use scientific notation (1e18) instead of exponential (10**18).

Location of Affected Code

File: contracts/Portal/modules/LiquidityModule/libs/LiquidityModuleLib.sol#L610-L612

if (supply > 0) {
return (d * 10 ** 18) / supply;

}

Recommendation

It is recommended to change the code when initializing the variable and export that value as a con-
stant.

TeamResponse

Good call, will be fixed.

[I-11] Use require Instead of assert

Severity

Informational

18

Description

The usage of the assert statement should be limited to testing internal errors and verifying invari-
ants. Well-functioning code should never trigger a panic, even when encountering invalid external
input. If such a situation occurs, it indicates a bug in your contract that requires fixing. Language
analysis tools can assist in evaluating your contract to identify the specific conditions and function
calls that may lead to panic.

Location of Affected Code

File: contracts/Portal/modules/StakeModule/libs/DepositContractLib.sol#L44

assert(_b.length >= 32 && _b.length <= 64);

File: contracts/Portal/modules/StakeModule/libs/DepositContractLib.sol#L68

assert(0 == temp_value); // fully converted

Recommendation

Consider using require statement instead.

TeamResponse

Acknowledged. However, we use assert to underline the conditions that should not fail. Will not be
mitigated.

[I-12] Use aMore Recent Solidity Version

Severity

Informational

Description

Currently, version=0.8.7 isusedacrossthewholecodebase.Usethe lateststableSolidityversionto
getall compiler features, bug fixes, andoptimizations.However, whenupgrading toanewSolidity ver-
sion, it’s crucial to carefully review the releasenotes, consider anybreakingchanges, and thoroughly
test your code to ensure compatibility and correctness. Additionally, be aware that some features or
changesmay not be backward compatible, requiring adjustments in your code.

Location of Affected Code

All of the smart contracts use a relatively old solidity version.

Recommendation

Consider, upgrading all smart contracts to Solidity version 0.8.19.

TeamResponse

Acknowledged, will be considered.

19

[I-13] Function Ordering does not Follow the Solidity Style Guide

Severity

Informational

Description

One of the guidelinesmentioned in the style guide is to order functions in a specific way to improve
readability and maintainability. By following this order, you can achieve a consistent and logical
structure in your contract code.

Location of Affected Code

Most smart contracts.

Recommendation

It is recommended to follow the recommendedorder of functions inSolidity, as outlined in theSolid-
ity style guide.

Functions should be grouped according to their visibility and ordered:

1. constructor
2. receive function (if exists)
3. fallback function (if exists)
4. external
5. public
6. internal
7. private

TeamResponse

Acknowledged. However, we do implement our own styling guidelines that closely resemble the of-
ficial guidelines. We also accept that we need to improve the consistency of our guidelines in the
future.

[I-14] Update External Dependency to the Latest Version

Severity

Informational

Description

Update the versions @openzeppelin/contracts and @openzeppelin/contracts-upgradeable to be
the latest in package.json.

Location of Affected Code

According topackage.json,@openzeppelin/contractsand@openzeppelin/contracts-upgradeable
is currently set to 4.8.0.

20

Recommendation

I also recommenddouble-checking the versionsof other dependenciesasaprecaution, as theymay
include important bug fixes.

TeamResponse

Acknowledged, will be considered.

[I-15]Missing/Incomplete NatSpec Comments

Severity

Informational

Description

(@notice, @dev, @param and @return) aremissing in some functions. Given that NatSpec is an impor-
tant part of code documentation, this affects code comprehension, audibility, and usability.

This might lead to confusion for other auditors/developers that are interacting with the code.

Location of Affected Code

In some contacts

Recommendation

Consider adding in full NatSpec comments for all functions where missing to have complete code
documentation for future use.

TeamResponse

Acknowledged, will be considered.

[I-16] Open TODOs

Severity

Informational

Description

Open TO-DOs can point to architecture or programming issues that still need to be resolved. Often
these kinds of comments indicate areas of complexity or confusion for developers. This provides
value and insight to an attacker who aims to cause damage to the protocol.

Location of Affected Code

File: contracts/Portal/modules/GeodeModule/GeodeModule.sol#L169

// TODO: maybe seperate this? why not.

21

Recommendation

Consider resolving the TO-DOsbefore deploying code to a production context. Use an independent
issue tracker or other project management software to track development tasks.

TeamResponse

Good call, will be fixed.

[I-17] Typos in Require Statement and Contract Comments

Severity

Informational

Description

In the following contract comments and require statements some typos were detected.

Location of Affected Code

spesific -> specific

Telescope is currently responsible from4 tasks ->Telescope is currently responsible for 4 tasks

interpereted -> interpreted

while state is PROPOSED: validator proposed, it is passed, but haven’t been created even tho it has
been aMAX_BEACON_DELAY ->while the state is PROPOSED: validator proposed, it is passed,
but has not been created even though it has been a MAX_BEACON_DELAY

it haven’t been executed -> it has not been executed

operator have not used the withdrawal contract -> operators have not used the withdrawal con-
tract

price kept same -> the price is kept the same

seperate -> separate

didnot -> did not

immidately -> immediately

Recommendation

It is recommended to correct the typos in contract comments and require statementmessages.

TeamResponse

Thanks, we will fix those.

[G-01] Using >>1 Instead of /2Can Save Gas

Severity

GasOptimization

22

Description

Adivision by 2 can be calculated by shifting one to the right (>>1). While theDIV opcode uses 5 gas,
the SHR opcode only uses 3 gas.

Location of Affected Code

File: contracts/Portal/modules/LiquidityModule/libs/LiquidityModuleLib.sol#L416

uint256 halfD = getD(xp, a) / 2;

File: contracts/Portal/modules/LiquidityModule/libs/LiquidityModuleLib.sol#L421

uint256 feeHalf = (dy * self.swapFee) / PERCENTAGE_DENOMINATOR / 2;

File: contracts/Portal/modules/LiquidityModule/libs/LiquidityModuleLib.sol#L581

v.feePerToken = self.swapFee / 2;

File: contracts/Portal/modules/LiquidityModule/libs/LiquidityModuleLib.sol#L850

uint256 feePerToken = self.swapFee / 2;

File: contracts/Portal/modules/LiquidityModule/libs/LiquidityModuleLib.sol#L1008

uint256 feePerToken = self.swapFee / 2;

Recommendation

Consider using shift right for tiny gas optimization.

/2 -> » 1

TeamResponse

Acknowledged, will be implemented.

[G-02] Using Booleans for Storage Incurs Overhead

Severity

GasOptimization

Description

Booleans aremore expensive than uint256or any type that takes up a full word, because eachwrite
operation, emits an extra SLOAD to first read the slot’s contents, replace the bits taken up by the
boolean, and then write back. This is the compiler’s defense against contract upgrades and pointer
aliasing, and it cannot be disabled.

Location of Affected Code

Most smart contracts.

23

Recommendation

Use uint256(1) and uint256(2) for true/false instead.

TeamResponse

Acknowledged, will be reconsidered.

[G-03] Use Assembly to Check for address(0)

Severity

GasOptimization

Description

Use assembly to check for address(0) tomake the gas fees lower.

Location of Affected Code

Most smart contracts.

Recommendation

It is recommended to create a helper function that checks if the address is address(0) and use it in
all the functions that are doing the if(address(0)) check to reduce gas costs.

function assemblyOwnerNotZero(address _addr) public pure {
assembly {

if iszero(_addr) {
mstore(0 x00 , "Zero address")
revert(0 x00 , 0 x20)

}
}

}

TeamResponse

Very good improvement, will be implemented.

[G-04] Splitting require()Statements that Use &&Saves Gas

Severity

GasOptimization

Description

Instead of using the && operator in a single require statement to check multiple conditions, using
multiple require statements with 1 condition per require statement will save 8 GAS per &&. The gas
difference would only be realized if the revert condition is met.

24

Location of Affected Code

Files:

• contracts/Portal/gETH.sol#L378-L383
• contracts/Portal/gETH.sol#L394-L399

Files:

• contracts/Portal/Portal.sol#L206
• contracts/Portal/Portal.sol#L208
• contracts/Portal/Portal.solL217

Files:

• contracts/Portal/modules/GeodeModule/libs/GeodeModuleLib.sol#L139-L142

• contracts/Portal/modules/GeodeModule/libs/GeodeModuleLib.sol#L198-L202

• contracts/Portal/modules/GeodeModule/libs/GeodeModuleLib.sol#L306

Files:

• contracts/Portal/modules/LiquidityModule/libs/AmplificationLib.sol#L102

Files:

• contracts/Portal/modules/LiquidityModule/libs/LiquidityModuleLib.sol#L296

• contracts/Portal/modules/LiquidityModule/libs/LiquidityModuleLib.sol#L508

• contracts/Portal/modules/LiquidityModule/libs/LiquidityModuleLib.sol#L1004

Files:

• contracts/Portal/modules/StakeModule/libs/DepositContractLib.sol#L44

Files:

• contracts/Portal/modules/StakeModule/libs/OracleExtensionLib.sol#L334

Files:

• contracts/Portal/modules/StakeModule/libs/StakeModuleLib.sol#L1379

• contracts/Portal/modules/StakeModule/libs/StakeModuleLib.sol#L1382

• contracts/Portal/modules/StakeModule/libs/StakeModuleLib.sol#L1484

Recommendation

Insteadof using the&&operator in a single require statement to checkmultiple conditions, usemul-
tiple require statements with 1 condition per require statement.

TeamResponse

Acknowledged, will be implemented.

[G-05] NoNeed to Initialize Variables with Default Values

Severity

GasOptimization

25

Description

If a variable is not set/initialized, the default value is assumed (0, false, 0x0 … depending on the data
type). Saves 8 gas per instance.

Location of Affected Code

In all contracts where there is a for loop like this:

-- for (uint256 i = 0;
++ for (uint256 i;

Recommendation

Do not initialize variables with their default values.

TeamResponse

Acknowledged, will be implemented.

[G-06] Use custom errors Instead of requirewith Revert Strings

Severity

GasOptimization

Description

Custom errors are available fromSolidity version 0.8.4. Custom errors save ~50 gas each time they
are hit by avoiding having to allocate and store the revert string. Not defining strings also saves de-
ployment gas.

Location of Affected Code

Most smart contracts.

Recommendation

Replace all require statements with Solidity custom errors for better UX and gas savings.

TeamResponse

Acknowledged, will be reconsidered.

[G-07] Expressions for constant Values Such as a Call to keccak256(),
Should Use immutableRather than constant

Severity

GasOptimization

26

Description

Expressions that define a constant and involve calling a function are re-calculated each time the
constant is referenced.

Location of Affected Code

File: contracts/Portal/gETH.sol#L49-L50

bytes32 public constant MIDDLEWARE_MANAGER_ROLE = keccak256("
MIDDLEWARE_MANAGER_ROLE");

bytes32 public constant ORACLE_ROLE = keccak256("ORACLE_ROLE");

File: contracts/Portal/middlewares/ERC20PermitMiddleware.sol#L44-L45

bytes32 private constant _PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256

nonce,uint256 deadline)");

Recommendation

You could use immutable until the referenced issues are implemented, then you only pay the gas
costs for the computation at deploy time.

TeamResponse

Very good improvement, will be implemented.

[G-08] Array Length Read in Each Iteration of the LoopWastes Gas

Severity

GasOptimization

Description

Reading array length at each iteration of the loop takes 6 gas (3 for mload and 3 to place mem-
ory_offset) in the stack. Caching the array length in the stack saves around 3 gas per iteration.

Location of Affected Code

Most smart contracts.

Recommendation

Cache the array length outside of the loop and use that variable in the loop.

TeamResponse

Very good improvement, will be implemented.

27

[G-09]ReplaceConstantVariablespublicVisibilitywithprivate/internal

Severity

GasOptimization

Description

When constants are marked public, extra getter functions are created, increasing the deployment
cost.

Location of Affected Code

File: contracts/Portal/gETH.sol#L49-L50

public -> private

bytes32 public constant MIDDLEWARE_MANAGER_ROLE = keccak256("
MIDDLEWARE_MANAGER_ROLE");

bytes32 public constant ORACLE_ROLE = keccak256("ORACLE_ROLE");

File: contracts/Portal/modules/GeodeModule/libs/GeodeModuleLib.sol#L88-L93

public -> private

uint32 public constant MIN_PROPOSAL_DURATION = 1 days;

public -> internal

uint32 public constant MAX_PROPOSAL_DURATION = 4 weeks;
uint32 public constant MAX_SENATE_PERIOD = 365 days;

File: contracts/Portal/modules/LiquidityModule/libs/LiquidityModuleLib.sol#L97-L103

public -> internal

uint256 public constant MAX_SWAP_FEE = PERCENTAGE_DENOMINATOR / 100;

public -> private

uint256 public constant MAX_ADMIN_FEE = (50 * PERCENTAGE_DENOMINATOR) /
100;

File: contracts/Portal/modules/StakeModule/libs/OracleExtensionLib.sol#L72-L78

public -> private

uint256 public constant MONOPOLY_RATIO = PERCENTAGE_DENOMINATOR / 100;
uint256 public constant MIN_VALIDATOR_COUNT = 50000;
uint256 public constant PRISON_SENTENCE = 14 days;

File: contracts/Portal/modules/StakeModule/libs/StakeModuleLib.sol

public -> internal

28

uint256 public constant MAX_GOVERNANCE_FEE = (PERCENTAGE_DENOMINATOR * 5)
/ 100;

public -> private

uint256 public constant MAX_MAINTENANCE_FEE = (PERCENTAGE_DENOMINATOR *
10) / 100;

uint256 public constant MAX_ALLOWANCE = 10 ** 6 + 1;
uint256 public constant PRICE_EXPIRY = 24 hours;
uint256 public constant IGNORABLE_DEBT = 1 ether;
uint256 public constant MIN_VALIDATOR_PERIOD = 3 * 30 days;
uint256 public constant MAX_VALIDATOR_PERIOD = 2 * 365 days;
uint256 public constant SWITCH_LATENCY = 3 days;

File: contracts/Portal/modules/LiquidityModule/libs/AmplificationLib.sol#L23-L26

public -> internal

uint256 public constant A_PRECISION = 100;
uint256 public constant MAX_A = 10 ** 6;
uint256 public constant MAX_A_CHANGE = 2;
uint256 public constant MIN_RAMP_TIME = 14 days;

Recommendation

Marking these functions private/internal will decrease gas costs. One can still read these vari-
ables through the source code. If they need to be accessed by an external contract, a separate
single-getter function can be used to return all constants as a tuple.

TeamResponse

Very good suggestion, will be reconsidered.

29

Thank you!

