ﬂ:; GeodeFinance

Internal Audit Report

March 2023

Prepared by Crash Bandicoot
Geodefi Ltd.

1. Executive Summary
2. Scope
2.1. Objectives
3. System Overview
4. Recommendations
4. External Audits
Changes from the Previous Audit
Withdrawal Contract
Off-chain Infrastructure
4.2. Review the Code Quality recommendations in Appendix
5. Findings
5.1. Pushing id two times to the list allldsByType
5.2. isPriceValid check is faulty
5.3. priceSync has not check for redo to increase priceValidity
5.4. Non-existent type can be proposed, contract manipulation risk for later
5.5. Senate election manipulation is possible with setElectorType
5.6. changeMaintainer can be griefed by a malicious maintainer
5.7. authenticate function faulty call causes some functions being out of use
5.8. Withdrawal contract upgrade proposal while Pool is not ready yet
5.9. Missing zero checks in Withdrawal Contract
5.10. Gap is faulty in the Swap struct
5.11. Monopoly threshold is set to max on initialization
5.12. 32 ETH to initiate a Pool won’t make sense if it can be withdrawn
5.13. Uninitialized variables
5.14. Unused return statements
5.15. governanceFee already must be smaller than Max
5.16. Not resetting the whitelist can cause unintended behavior
5.17. Gas - All gas findings:
1. Code Quality Recommendations
1.1. Style
1.2. Logic
1.3. Improvement
2. Files in Scope
3. Usage

[Co TN (o T o'o TN 2 W 4 » IRN& » NN SNU N SN N N S SN SN V)

NN MNMNMDNMNDNODN S N I S G S G ¥ —_
COOoownonaRNRoovnoIJIodsar2=20

1. Executive Summary

This report shows the findings of the internal audit identified while
reviewing the Geode Finance’s code base.

The audit was executed over 4 weeks, from March 6th, 2023 to March 31th,
2023, by Crash Bandicoot. A total of 20 person-days were spent. During this
period, discussions regarding the findings and mitigations were held with Ice Bear.

Throughout the audit, Geode Finance’s staking solution was reviewed,
named The Staking Library. Implementation aims to provide a global standard for
Permissionless Configurable Staking Pools and Derivatives. Geode Finance’s goal
is to create a staking library that can be utilized by a router, called Portal, by any
parties easily. The Protocol hopes to contribute to the staking ecosystem with a
trustless and decentralized solution.

Compared to the previous audit conducted by Diligence, code is simplified a
lot and some naming conventions are corrected. However, there is more to cover,
over the solidity style guideline. An explanation can be found in the Code Quality

Appendix.

Staking logic in the provided contracts are working together with an Oracle
logic. The functionality and security is highly dependent on the off-chain
infrastructure and it is highly recommended to have an external audit on it.

The Protocol lacks the Withdrawal logic. However, since all other logics are
implemented while keeping the withdrawal logic in mind; there are no other
changes planned in any library or contract, other than the Withdrawal contract.
Though, it still causes some ambiguity while reviewing the codebase.

Written tests are found enough but there is still some room for
improvements like fuzz testing. Also, currently all tests are integration tests, which
pass through Portal. They may not reach all the parts of the library calls. It is also
recommended to write unit tests.

2. Scope

The review focused on the commit hash
dafdbabbdfc9807e0e697cfec5a01884a9fef573. The list of files in scope can be
found in the Appendix. Since some findings are fixed during the internal audit,
some new findings may be related to the current version of the contracts.

21. Objectives
With Ice Bear, the following objectives were identified:

1. Changes from the previous audit are fixed correctly and not causing
any other unintended consequences.

2. Report any known vulnerabilities in smart contract and DeFi related
systems.

3 Figuring out problematic edge cases.

3. System Overview

For the detailed system overview, please refer to documentation.

4. Recommendations
41. External Audits

Changes from the Previous Audit

Although there is an internal audit conducted, it is a best practice to
process all changed contracts with an external auditor, for an extra eye.

Withdrawal Contract
After the withdrawal contract is finalized, it needs to be externally audited.

Off-chain Infrastructure

As mentioned previously, off-chain infrastructure needs to be audited
since the project’s functionality and security is highly dependent on it. Price Oracle

https://github.com/Geodefi/Portal-Eth/commit/dafdbabbdfc9807e0e697cfec5a01884a9fef573
https://docs.geode.fi/

Manipulation is one of the most common attacks with reentrancy in the DeFi
ecosystem.

4.2. Review the Code Quality recommendations in Appendix

Some other comments related to code quality can be found under

Appendix section Code Quality Recommendations.

5. Findings
Each issue has an assigned severity:

° @ issues are recommendations for improvements on gas cost. Not
required to be addressed, but it will make projects cheaper to use if code
maintainers decide to address them.

° m issues are subjective in nature. They are typically suggestions
around best practices or readability. Code maintainers should use their own
judgment as to whether to address such issues.

° issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

° m issues are security vulnerabilities that may not be directly
exploitable or may require certain conditions in order to be exploited. All
major issues should be addressed.

° issues are directly exploitable security vulnerabilities that need to
be fixed.

5.1. Pushing id two times to the list allldsByType

Critical

Planet Ids pushed to allldsByType list both at approveProposal and while
initialization of the pool. This creates a problem while adding this type as an
elector, since using length of the inner list that holds specific type’s ids, it will
mess with the elector count since some ids actually appear twice so it will mess
with the elections.

function approveProposal(
DualGovernance storage self,
DSU.IsolatedStorage storage DATASTORE,
uint256 id
external onlySenate(self) returns (uint256 _type, address _controller) {
require(
self._proposals[id].deadline > block.timestamp,
"GU: NOT an active proposal"
);

_type = self._proposals[id].TYPE;
_controller = self._proposals[id].CONTROLLER;

require(_type !'= ID_TYPE.SENATE, "GU: can NOT approve SENATE election");

DATASTORE.writeUintForId(id, "TYPE", _type);
DATASTORE.writeAddressForId(id, "CONTROLLER", _controller);
DATASTORE.writeBytesForId(id, "NAME", self._proposals[id].NAME);
DATASTORE.allIdsByTypel_typel.push(id);

contracts/Portal/utils/GeodeUtilsLib.sol: L325

function setElectorType(
DualGovernance storage self,
DSU.IsolatedStorage storage DATASTORE,
uint256 _TYPE,
bool _isElector
external onlyGovernance(self) {
require(_isElector != isElector(self, _TYPE), "GU: type already elector");
require(
_TYPE > ID_TYPE.__ GAP__,
"GU: @, Senate, Upgrade, GAP cannot be elector"
};

self._electorTypes[_TYPE] = _isElector;

if (_isElector) {

self._electorCount += DATASTORE.allIdsByTypel TYPE].length;
} else {

self._electorCount —= DATASTORE.allIdsByTypel[_TYPE].length;

contracts/Portal/utils/GeodeUtilsLib.sol: L410

function initiatePool(

PooledStaking storage self,

DSU.IsolatedStorage storage DATASTORE,

uint256 fee,

uint256 interfaceVersion,

address maintainer,

address _GOVERNANCE,

bytes calldata NAME,

bytes calldata interface_data,

bool[3] calldata config

external {

require(
msg.value == DCU.DEPOSIT_AMOUNT,
"SU: requires 1 validator worth of Ether"

);

uint256 id = DSU.generateId(NAME, ID_TYPE.POOL);

require(id > 10 xx 7, "SU: Wow! low id");

require(

DATASTORE. readUintForId(id, "initiated") == 0,

"SU: already initiated"
);
DATASTORE.writeUintForId(id, "TYPE", ID_TYPE.POOL);
DATASTORE.writeAddressForId{(id, "CONTROLLER", msg.sender);
DATASTORE.writeBytesForId(id, "NAME", NAME);
DATASTORE.writeUintForId(id, "initiated", block.timestamp);
DATASTORE.allIdsByType [ID_TYPE.POOL].push(id);

contracts/Portal/utils/StakeUtilsLib.sol: L580
Recommendation:

Since pools are permissionless, add a check in the newProposal function to
not accept pool proposals. It will solve this issue.

Status:

In the newProposal of GoedeUtils library, we now prevent creating a
proposal for a Pool (type 5). So, this issue is Already addressed and fixed.

5.2. isPriceValid check is faulty

Critical

Expected behavior of the price validity is to be invalid for all the Pools after
Oracle reports new price merkle root. Since in the require statement, or (||) is used
instead of and (&&) it lets Pools use the previous price up to 24 hours
(PRICE_EXPIRY) more with the previous price.

function isPriceValid(

PooledStaking storage self,
uint256 poolld
public view returns (bool isValid) {

uint256 lastupdate = self.gETH.priceUpdateTimestamp(poolld);
unchecked {
isValid =
lastupdate + PRICE_EXPIRY >= block.timestamp ||
lastupdate >= self.0ORACLE_UPDATE_TIMESTAMP;

contracts/Portal/utils/StakeUtilsLib.sol: L1087
Recommendation:

Or (||) statement needs to be changed with the and (&&) statement.
Status:

Already addressed and fixed.

5.3. priceSync has not check for redo to increase priceValidity

Critical

priceSync function has no checks for re-doing the price update even while
already done with the current price merkle root. This lets Pool to increase its
validity by updating Pool’s price update timestamp. And with the previous issue
5.2, it lets Pool to use the price and continue doing deposits even though oracle is
not giving any price updates to the infinite.

Recommendation:

Add a require statement to check if the Pool's price update timestamp is
smaller than oracles update timestamp to do the _priceSync

Status:

Already addressed and fixed.

5.4. Non-existent type can be proposed, contract
manipulation risk for later

Major

In the newProposal, check is needed to be done to be sure the given type actually
exists. Also same for setElectorType function, it only checks if the type is bigger
than a constant number. Not existing types can be given and creates a risk for
contracts currently or with the later updates since those typed Ids will keep
staying there to the infinite.

Recommendation:

An “existingTypes” mapping can be created to keep being modular. And can
add new types to that mapping with a proposal and check the type exists in that
mapping in the necessary functions.

Status:

Since setElectorType is deleted this is no longer a problem.

5.5. Senate election manipulation is possible with
setElectorType

To not affect the senate elections, during the senate proposal, there should
not be any change at election types (setElectorType should not be functional
during the elections) and it is also better not to accept any proposal, at least from
an elector type.

function setElectorType(
DualGovernance storage self,
DSU.IsolatedStorage storage DATASTORE,
uint256 _TYPE,
bool _isElector
external onlyGovernance(self) {
require(_isElector != isElector(self, _TYPE), "GU: type already elector");
require(
_TYPE > ID_TYPE. GAP_,
"GU: @, Senate, Upgrade, GAP cannot be elector"
);

self._electorTypes[_TYPE] = _isElector;

if (_isElector) {

self._electorCount += DATASTORE.allIdsByType[_TYPE].length;
} else {

self._electorCount —= DATASTORE.allIdsByType[_TYPE].length;
}

emit ElectorTypeSet(_TYPE, _isElector);

contracts/Portal/utils/GeodeUtilsLib.sol: L395 - L416
Recommendation:

Add require statement to prevent setElectorType function to be called
during the senate election.

10

Status:

Since setElectorType and senate logic is deleted. Issue is resolved.

5.6. changeMaintainer can be griefed by a malicious
maintainer

Major

changeMaintaineris only allowed if not prisoned for the operator but the
controller could lose the control of the maintainer, like a malicious maintainer. And
malicious maintainers can keep being malicious and do not let controllers to
change it causing the abolish the use of changeMaintainer and so other
maintainer controlled functions. So this logic needs to be reconsidered.

Recommendation:

changeMaintainer function should not use authenticate, do the checks
there directly.

Status:

Already addressed and fixed.

5.7. authenticate function faulty call causes some functions
being out of use

authenticate function is problematic, both “expectedMaintainer” and
“expectedCONTROLLER” parameters are set as true for some calls, but for it to be
true, controller and maintainer should be the same. This is not correct for all
cases. This problem can be found in the following functions:
batchApproveOperators, proposeStake, beaconStake and switchValidatorPeriod.

1

function authenticate(
DSU.IsolatedStorage storage DATASTORE,
uint256 id,
bool expectCONTROLLER,
bool expectMaintainer,

bool[2] memory restrictionMap

internal view {

require(
DATASTORE. readUintForId(id, "initiated") != 0,
"SU: ID is not initiated"

);

uint256 typeOfId = DATASTORE.readUintForId(id, "“TYPE");

if (typeOfId == ID_TYPE.OPERATOR) {
require(restrictionMap[@], "SU: TYPE NOT allowed");
if (expectCONTROLLER || expectMaintainer) {
require(
!isPrisoned(DATASTORE, id),
"SU: operator is in prison, get in touch with governance"
)5
}
} else if (typeOfId == ID_TYPE.POOL) {
require(restrictionMap[1], "SU: TYPE NOT allowed");
} else revert("SU: invalid TYPE");

if (expectMaintainer) {
require(
msg.sender == DATASTORE. readAddressForId(id, "maintainer"),
"SU: sender NOT maintainer"
);

return;

if (expectCONTROLLER) {
require(
msg.sender == DATASTORE. readAddressForId(id, "CONTROLLER"),
"'SU: sender NOT CONTROLLER"
);

return;

contracts/Portal/utils/StakeUtilsLib.sol: L223 - L264

12

function batchApproveOperators(
DSU.IsolatedStorage storage DATASTORE,
uint256 poolld,
uint256[] calldata operatorlIds,

uint256[] calldata allowances
external returns (bool) {
authenticate(DATASTORE, poolld, true, true, [false, truel);

contracts/Portal/utils/StakeUtilsLib.sol: L992

function proposeStake(
PooledStaking storage self,
DSU.IsolatedStorage storage DATASTORE,
uint256 poolld,
uint256 operatorld,
bytes[] calldata pubkeys,
bytes[] calldata signaturesi,
bytes[] calldata signatures31l
external {
// checks and effects
authenticate(DATASTORE, operatorId, true, true, [true, falsel);

contracts/Portal/utils/StakeUtilsLib.sol: L1328

function beaconStake(
PooledStaking storage self,
DSU.IsolatedStorage storage DATASTORE,
uint256 operatorld,

bytes[] calldata pubkeys

external {
authenticate(DATASTORE, operatorId, true, true, [true, falsel);

contracts/Portal/utils/StakeUtilsLib.sol: L1471
Recommendation:

Only give access either to controller or maintainer for these functions.

Status:

13

Already addressed and fixed.

5.8. Withdrawal contract upgrade proposal while Pool is nhot
ready yet

fetchWithdrawalContractUpgradeProposal function does not have any
restrictions, anyone can call it this may lead a Pool to make a decision without
even deciding how to proceed yet.

function fetchWithdrawalContractUpgradeProposal({
uint256 id
) external virtual override returns (uint256 withdrawalContractVersion) {
withdrawalContractVersion = STAKER._defaultModules[
ID_TYPE.MODULE_WITHDRAWAL_CONTRACT
1;

StakeUtils.withdrawalContractById(DATASTORE, id).newProposal(
DATASTORE. readAddressForId(withdrawalContractVersion, "CONTROLLER"),
ID_TYPE.CONTRACT_UPGRADE,

DATASTORE. readBytesForId(withdrawalContractVersion, "NAME"),
4 weeks

contracts/Portal/Portal.sol: L688 - L701
Recommendation:

Make sure not everyone can call this function as they wish with any Pool Id.
Status:

Already addressed and fixed.

14

5.9. Missing zero checks in Withdrawal Contract

Missing zero checkers in withdrawal contract initialize function.

function initialize(
uint256 _VERSION,
uint256 _ID,
address _gETH,
address _PORTAL,
address _OWNER
public virtual override initializer returns (bool) {
__ReentrancyGuard_init();
__Pausable_init();
__UUPSUpgradeable_init();

gETH = _gETH;
POOL_ID = _ID;

GEM.GOVERNANCE = _PORTAL;
GEM.SENATE = _OWNER;
GEM.SENATE_EXPIRY = type(uint256).max;

CONTRACT_VERSION = _VERSION;
emit ContractVersionSet(_VERSION);

return true;

contracts/Portal/liquidityPool/utils/SwapUtils.sol: L91
Recommendation:

Check that addresses are not zero.
Status:

Already addressed and fixed.

15

5.10. Gapis faulty in the Swap struct

Swap struct’s gap is wrong. It is a uint256[8] _gap but it should be 5.

struct Swap {
IgETH gETH;
ILPToken 1pToken;

contracts/Portal/liquidityPool/utils/SwapUtils.sol: L91

Recommendation:

uint256
uint256
uint256
uint256
uint256
uint256
uint256

pooledTokenId;
initialA;
futureA;
initialATime;
futureATime;

swapFee;

adminFee;

uint256[2] balances;
uint256[8] _ gap;

Change the 8 with 5.

Status:

Already addressed and fixed. Also checked all gap identifiers of structs and

contracts.

16

5.11. Monopoly threshold is set to max on initialization

Monopoly threshold is set to max at the beginning, it causes one to create a
Pool and pass the threshold of the ethereum in the first few hours of the protocol
until the first oracle update comes. Practically it may seem impossible, but this is
possible like if Lido or Rocketpool comes during the initiation of the protocol and
they can put all their validator and pass the threshold easily. They can stay upon
the threshold until they exit.

STAKER.MONOPOLY_THRESHOLD = type(uint256).[EN;

contracts/Portal/Portal.sol: L199
Recommendation:

Set it to min until the first oracle report comes or something less than the
planned threshold.

Status:

Acknowledged but not addressed as there is no likelihood of this happening
within the first 8 hours of the launch.

512. 32 ETH toinitiate a Pool won't make sense if it can be
withdrawn

While writing a withdrawal contract one should be careful and should not
add a direct way out for geTH. Otherwise malicious parts can get money from
lending and handle it in one transaction which will not provide the wanted
restriction.

Recommendation:

17

Can put it directly to the surplus and lock it for some time or until an
operator takes it.

Status:

It is stated that all funds that are entering the pool need to cycle through
the Beacon chain, before ending up on the Withdrawal Contract.

5.13. Uninitialized variables

Some variables are not initialized, even though they are zero, it is a good
practice to initialize it as 0. appendAddressArrayBatch, regulateOperators,
StakeBeacon, loop parameters(“i” or “j”) are not initialized. Also “lastldChange” in
StakeBeacon.

Recommendation:
Initialize those parameters as the correct initial value.
Status:

Already addressed and fixed for looping variables (i,j) some local variables
can stay.

514. Unused return statements

deposit and deposit, returns bought and minted gETH but return not used,
statement. Same occurs for batchApproveOperators and approveOperators, it
returns a bool statement but never used.

Recommendation:

18

Either use the return or delete the return from the called functions.
Status:

Already addressed and fixed. Using the return statements now.

5.15. governanceFee already must be smaller than Max

Minor

Checking the fee cooldown at getGovernanceFee will cost much more gas,
instead it can be checked while setting the fee at setGovernancefFee which will be
much more gas efficient.

Also since the MAX_GOVERNANCE_FEE is constant from now on, no need to
check for. If MAX_GOVERNANCE_FEE > self. GOVERNANCE_FEE, because it is
impossible to set a fee bigger than MAX_GOVERNANCE_FEE.

/ *k
* @notice limiting the GOVERNANCE_FEE, 5%
* /

TR TR [V1 o & Nl oo iR =1 A MA X _ GOVERNANCE _FEERS

(PERCENTAGE_DENOMINATOR * 5) / 100;

contracts/Portal/utils/GeodeUtilsLib.sol: L102

19

function getGovernanceFee(

DualGovernance storage self
) external view returns (uint256) {
return
block.timestamp < FEE_COOLDOWN
70
: MAX_GOVERNANCE_FEE > self.GOVERNANCE_FEE
? self.GOVERNANCE_FEE
: MAX_GOVERNANCE_FEE;

contracts/Portal/utils/GeodeUtilsLib.sol: L182

/ *k
* @notice onlyGovernance, sets the governance fee
 @dev Can not set the fee more than MAX_GOVERNANCE_FEE
*/
function setGovernanceFee(

DualGovernance storage self,

uint256 newFee

external onlyGovernance(self) {
require(newFee <= MAX_GOVERNANCE_FEE, "GU: > MAX_GOVERNANCE_FEE");

self.GOVERNANCE_FEE = newFee;

emit GovernanceFeeUpdated(newFee);

contracts/Portal/utils/GeodeUtilsLib.sol: L195 - L204
Recommendation:
Delete the check MAX_GOVERNANCE_FEE > self. GOVERNANCE_FEE

Status:

20

Not addressed, Icebear did not accept this as an issue stating that getter
functions should always enforce limits.

5.16. Not resetting the whitelist can cause unintended behavior

While setting a private pool as public with a whitelisting contract, will
eliminate the whitelisting contract. But when it is set as private again, even though
not intended, it will keep the previous whitelisting contract. Which should not be
the expected behavior.

Recommendation:

Set the whitelisting contract as zero address for the Pool while setting it to
public.

Status:

Already addressed and fixed.

517. [N - All gas findings:
m GeodeUtils using the isElector function inside the
setElectorType function and also in the approveSenate
function. Instead, one can just use the code itself to save gas.

m DataStoreUtils (usage in GeodeUtils and maybe somewhere
else too) can have unchecked versions of addUintForld and
similar functions. Since there are parts that can be sure, it is
not possible to overflow. Like voting for the senate in the
approveSenate function.

21

There is no need to set type to “memory uint256 _type =
self._proposals[proposalld]. TYPE;” in GeodeUtils, since it is
only used once in the function approveSenate

To save gas, “WC? can be used with the require error
messages instead of “WithdrawalContract:

Custom errors can be used instead of require statements, to
save gas!

OracleUtils onlyOracle modifier, gets the whole storage struct
as a parameter, just getting the address saves gas. Tested!

Assignment “uint256 operatorld =
STAKER._validators[_pk].operatorld;” definitely needs to be
taken front since it is used one more time beforehand. So it will
save gas!

In function approveProposal in Portal, instead of checking all
default types one by one, a mapping can be created from type
number = “default” or “allowed” strings or an integer again like
1 and 2 for “default” and “allowed” respectively to save gas,
this will also combined with recommendation in issue 5.4.

StakeUtils _setMaintainer function, unnecessary memory
variable is used, no need to assign the “currentMaintainer” to a

22

variable, can be used in the require statement directly to save
gas.

StakeUtils "SU: not enough funds in Portal ?" unnecessary
empty space before question mark, delete it to save gas.

StakeUtils authenticate function is a gas monster. Each check
can be written one by one to save gas. As an example, in the
batchApproveOperators function, let's say one sets 10
operators. For each operator, in the for loop it is doing 3
unnecessary if statement checks and an unnecessary require
statement related with the maintainer and controller; which
cause 180 more gas to be consumed then needed.

About loops which have checks in it, can do the checks first in
another previous loop first. Then do the statements in another
loop, because if the required case fails in the last iteration, the
user will lose all the previous gas. For instance, this makes
sense at the proposeStake function’s loop and
batchApproveOperators function’s loop too.

No need for the decreased parameter in
_decreaseWalletBalance function. Since it will fail and revert
anyways. Otherwise it will always return true. There is no case
you return false. Then it makes no sense to return true.

Instead of feetheft and alienate events, they both call
_imprison. _imprison can get another parameter for
“calledType” which is bytes. For feetheft the parameter can be

23

the event name and for the alienate it could be the PK. Need to
fix any other place _imprison is called if there is.

m Geodeutils " GU: already approved’, there is an extra space at
the beginning.

24

APPENDIX

1. Code Quality Recommendations

11. Style
m State variables should take place before events according to
the solidity style guide.

m Function order should be changed according to the solidity
style guide function order.

m Geodeutils getGovernanceFee function is no need to use
ternary, to make if more simple use normal if statements, if
won't give you optimization in any ways, writing code more
clear will give you less possibility to make errors and readability
by auditors.

m What is the need of _ (underscore) before some variables
inside the struct? There is no need if there is no name collision
and there is not.

m WithdrawalContract - no need for the word contract in the
name, since it is already a contract.

m Everywhere (mostly structs) using all capital variable names.
This makes one think that these are constants, while they are
not. Which is a bad practice for the style guide.

25

Delete all todo’s before going production “todo: add to portal
isWhiteListed”, not added to portal, check it again and add it if
not there!

StakeUtils withdrawalContractByld and liquidityPoolByld
functions taking the “poolld” parameter differently, and having
a haming convention is needed.

In StakeUtils, put constantValidatorData Struct to the
beginning of the library.

StakeUtils proposeStake function, in the Validator Struct
creation; for the state, do not use 1, instead use
VALIDATOR_STATE.PROPOSED

In GeodeUtils, 1743454800 timestamp is given as feeless time,
giving a timestamp is confusing, instead use reserved words
like 2 years, 1 years.

1.2. Logic

In GeodeUtils, "self._proposals[proposalld].deadline >=
block.timestamp, "GU: proposal expired" " is using “>=", all

other checks related to this using “>” for consistency, it is
good to use “>”.

26

In GeodeUtils, instead of the " GU: already approved"” message,
“GU: already voted”is a much less confusing message.

In OracleUtils "OU: NOT all pubkeys are pending” message,

change pubkeys with pubkey. That way makes more sense,

since there is only one pubkey in that function
alienateValidator.

OracleUtils "OU: NOT all proofs are valid" message is better to
be changed with “OU: proof is NOT valid” message, since not
only the batch function is calling and it is a single proof not
valid at that moment.

StakeUtils _deployinterface function’s require statement "SU:
could not init interface" cannot be triggered. Because either it
will revert during the initialization or return true, it will never
return false so this requirement is basically unnecessary. try
catch can be used for that external call instead of require, and
use revert inside the catch block.

Same problem with the previous Appendix 1.2.6
deployLiquidityPool |Swap initialization.

StakeUtils needs an event to detect the public and private
pools when changed.

27

m In GeodeUltils, ‘require(_isElector != isElector(self, _TYPE), "GU:
type already elector") ' statement’s error message is not
accurate since it may also “already be not an elector”.

1.3. Improvement
m Withdrawal contract is required to deploy in the current

protocol; but for a solo staker, it is not needed to be. It can be
made configurable during the initialization. if not creating a
pool and not having an interface and so on, can get the given
WC address as EOA. Not giving any ability to open a pool or
creating an interface later on to those controllers. This way the
protocol can let them use the system as it is without even
needing to deploy a withdrawal contract and give gas for that
or try to keep it updated for every withdrawal contract update.

m Let controllers of the liquidity pools’ have a pause functionality
for acting fast when protocol starts using the real governance!

28

2. Filesin Scope
Internal audit was conducted on the following files:

File

code/contracts/Portal/gETH.sol
code/contracts/Portal/Portal.sol
code/contracts/Portal/utils/globals.sol
code/contracts/Portal/utils/DataStoreUtilsLib.sol
code/contracts/Portal/utils/GeodeUtilsLib.sol
code/contracts/Portal/utils/OracleUtilsLib.sol
code/contracts/Portal/utils/StakeUtilsLib.sol

code/contracts/Portal/withdrawalContract/withdrawalContract.sol

3. Usage

Link

>
D
=
()

>
D
=
()

-y
(D
=
(D

>
(D
=
D

>
()
=
()

>
()
=
()

>
D
=
D

>
D
—
D

This report belongs to GEODE FINANCE and it is not allowed to share with

other parties. Even though GEODE FINANCE shares this report with you or with

your company, it should not be shared with any other parties.

29

https://github.com/Geodefi/Portal-Eth/blob/dafdbabbdfc9807e0e697cfec5a01884a9fef573/contracts/Portal/gETH.sol
https://github.com/Geodefi/Portal-Eth/blob/dafdbabbdfc9807e0e697cfec5a01884a9fef573/contracts/Portal/Portal.sol
https://github.com/Geodefi/Portal-Eth/blob/dafdbabbdfc9807e0e697cfec5a01884a9fef573/contracts/Portal/utils/globals.sol
https://github.com/Geodefi/Portal-Eth/blob/dafdbabbdfc9807e0e697cfec5a01884a9fef573/contracts/Portal/utils/DataStoreUtilsLib.sol
https://github.com/Geodefi/Portal-Eth/blob/dafdbabbdfc9807e0e697cfec5a01884a9fef573/contracts/Portal/utils/GeodeUtilsLib.sol
https://github.com/Geodefi/Portal-Eth/blob/dafdbabbdfc9807e0e697cfec5a01884a9fef573/contracts/Portal/utils/OracleUtilsLib.sol
https://github.com/Geodefi/Portal-Eth/blob/dafdbabbdfc9807e0e697cfec5a01884a9fef573/contracts/Portal/utils/StakeUtilsLib.sol
https://github.com/Geodefi/Portal-Eth/blob/dafdbabbdfc9807e0e697cfec5a01884a9fef573/contracts/Portal/withdrawalContract/WithdrawalContract.sol

